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Abstract:

In this research we survey the periodicity of billiards in some class of poly-
gons ( the polygons which tiles the plane with reflection), then we study the
periodicity of billiards in triangles. It has been shown that by elementary
geometric ways that an acute, right and isosceles triangles always have a pe-
riodic billiard path. Schwartz write a computer assisted proof that a triangle
has a periodic billiard path when all its angles are at most one hundred de-
gree. But the conjecture that does the triangles which have an angle greater
than 100 degree is still open.

Keywords: Billiards in polygon, Periodicity, McBilliards program, Trans-
lation surface.
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Preface

The study of mathematical billiard is one of the interesting subjects by the
researchers nowadays. The theory of studying mathematical billiards can
be partitioned into three areas: A convex billiards, billiards in polygons and
dispersing billiards. A mathematical billiard consists of a domain (i.e billiard
table ) and a mass point (the billiard ball), that moves freely without friction
according to the optic law that is the angle of incidence is equal to the angle
of reflection. The idea is to reflect the polygon with respect to the side it
hits, instead of reflecting the trajectory. In 1775, Fagnano proved that the
combinatorial orbit 123 describes a periodic orbit on every acute triangle in
[1].

An acute, right and isosceles triangles always have periodic billiard paths
by elementary geometric ways: The fagnano path exists on a triangle if and
only if the triangle is acute, In 1986, Masur showed that every rational poly-
gons (i.e polygons whose angles are rational multiple of π) admits infinitely
many periodic orbits which are distinct [17], and in 1987 katok proved that
the number of periodic orbits of a given period grows exponentially. Pat
and Hooper shows that right triangle does not have a stable periodic billiard
paths [14]. Hanson and Kolan showed that every orbit which is perpendicular
to the base of a right triangle is periodic [15].

Furthermore, it has been shown that the billiard inside a unit square has a
periodic trajectory if the slope of a trajectory is rational, and it is everywhere
dense and uniformly distributed if the slope is irrational. Regular trajectories
which does not pass through the corners of the polygon. However, one can
also study trajectories emitted from one corner and trapped after several
reflections in some other (or the same) corner, these trajectories are called
the generalized diagonals.
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Why mathematicians are especially interested in rational billiards:

1. Without rationality assumption , few tools are available and not much
is known.

2. With the rationality assumption a wide range of interesting behavior
is possible depending on the choice of polygon.m v

3. The rationality assumption leads to surprising and beautiful connec-
tions to algebraic geometry, Teichmǔller theory , ergodic theory on
homogenous spaces, and other areas of mathematicians.

This survey thesis consists mainly of three chapters. Chapter 1 consists
of basic definitions and results. In chapter 2 we introduce some of the basic
results in polygons especially the polygons that tile the plane with reflection
and triangles. In chapter 3 we explain how the mcbilliards applet allows us
to prove periodicity in an obtuse triangle whose one angle is at most 100
degree, and we study also the stability issue.



Chapter 1

Basics and preliminaries

1.1 Euler Characteristic and maniolds

Definition 1.1.1. [16] A manifold M of dimension n, is a topological space
with the following properties:

• M is Hausdorff.

• M is locally Euclidean of dimension n, and.

• M has a countable basis of open sets.

Definition 1.1.2. [26] A surface or a 2-dimensional manifold is any object,
such that for any point p ∈ S, there is a small region U on the surface, which
surrounds and contain the point p.

Definition 1.1.3. [6] The number of handles is called the genus of M and
is denoted by g.

Definition 1.1.4. [26] A triangulation is cutting a surface X into a finite
number of ’polygonal’ regions called faces, by smooth non-self-intersecting
arcs, called edges, joined at vertices.

Definition 1.1.5. [26] Two surfaces are called Homeomorphic if one of them
can be triangulated, then cut along a subset of the edges into pieces, and then
glue back together according to the instructions given by the orientation and
labels on the edges, in order to obtain the other surface.

7



8 CHAPTER 1. BASICS AND PRELIMINARIES

Definition 1.1.6. [5] The Euler characteristic of a finitely triangulated sur-
face is χ = V − E + F where V is the number of vertices, E denotes the
number of edges and F is the number of faces.

Example 1. [26] Consider the cube in three dimensions. The cube has eight
vertices, twelve edges, and six faces. So the Euler characteristic of the cube
is

χ = V − E + F

= 8− 12 + 6

= 2

Figure 1.1: Cube in three dimension.

Prposition 1. [26] The Euler characteristic of a surface does not depend on
its triangulation i.e the Euler characteristic does not change if we subdivide
a face or an edge of a polyhedron.

Proof: Let P be an n-gon.

• If we add a single vertex, then the number of vertices will be changed
by 1, then we must connect this vertex with the other vertices, this will
result another n edges, so 4E = n. The resulting edges will divide the
face into n subfaces. So the number of faces increases by n− 1, so the
total change in Euler characteristic is

∆χ = ∆V −∆E + ∆F

= 1− n+ n− 1

= 0
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• Suppose that we subdivide an edge by adding a new vertex in the
middle of the edge, so the number of vertices is increased by one, and
the number of edges increased by one. But the number of faces remains
the same, therefore the total change of the characteristic is

∆χE = 1− 1 + 0 = 0

Definition 1.1.7. [6] The standard n-simplex, denoted by σn, is the subset
of Rn+1 given by

σn = {(x0, ....., xn) ∈ Rn+1 : xi ≥ 0 ,∀i,
n∑
i=0

xi = 1}.

The 0-simplex is a point and the 1-simplex is an interval while the 2-simplex
is a triangle.

Definition 1.1.8. [6] A triangulation of surface M is orientable if its 2-
simplices admits a coherent collection of orienations and non-orientable oth-
erwise.

Figure 1.2: Coherent and incoherent orientations of 2-simplices.

Remark 1. [6] The Euler characteristic of the orientable surface of genus g
is 2− 2g.

Proof: By induction on g

• If g = 0, then χ0 = 2− 2(0) = 2, and the orientable surface is a sphere
with Euler characteristic 2 [6].

• Assume that the assumption is true for g = n i.e χn = 2− 2n.
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• For g = n + 1, then χn+1 = 2− 2(n + 1) = 2− 2n− 2 = χn − 2. But
the Euler characteristic decreases by 2 when the number of handles
increases by one [6]. Hence by induction the assumption is true �.

Definition 1.1.9. [14] The greatest common divisor (gcd) of a set of positive
integers {a1, ...., ak} is the largest integer which divides every element of the
set denoted by gcd(a1, ...., ak).

Definition 1.1.10. [16] A chart for M is a homeomorphism φ : U → V
where U is an open set in M and V is an open set in Rn. A chart for M is
denoted by (U, φ).

Definition 1.1.11. [16] A collection of charts A = {ϕα : Uα → Vα|α ∈ I}
is called an atlas for M if

⋃
α∈I Uα = M.

Definition 1.1.12. [16] If A and B are two differentiable atlases then their
union is also differentiable atlas. Equivalentely, for every chart φ in A and
ψ in B, φ ◦ ψ−1 and ψ ◦ φ−1 are smooth.

Definition 1.1.13. [16] Two atlases A1, A2 of M are called equivalent if
and only if A1∪A2 is an atlas of M . An equivalence class of atlases in M is
called conformal structure. A maximal atlas of M is the union of all atlases
in a conformal structure.

Definition 1.1.14. [3] M is called a differentiable n-manifold if the following
hold:

• M1 : The set M is covered by a collection of charts, that is every point
is represented in at least one chart.

• M2 : has an atlas; that is M can be written as a union of compatible
charts.

Definition 1.1.15. [6] Let φα, φβ be two charts, then the map between the
two charts

φα ◦ φ−1β : φ(uα ∩ uβ)→ φα(uα ∩ uβ)

is called the transition map.

Definition 1.1.16. [3] A Riemann surface is a two-dimensional, connected,
Hausdorff topological manifold M with a countable base for the topology and
with conformal transition maps between charts i.e, there exists a family of
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open set {uα} covering M and homeomorphisms φα: uα → vα where vα ⊂ R2

is some open set so that

φα ◦ φ−1β : φ(uα ∩ uβ)→ φα(uα ∩ uβ)

is biholomorphic .

Definition 1.1.17. [3] A function f on a manifold M into N is said to be
smooth if for every p ∈ U there is a chart (U, φ) for M and a chart (V, ψ) for
N at a point f(p) with f(U) ⊆ V such that the partial derivatives of

ψ ◦ f ◦ φ−1 : φ(U) ⊆ Rm → ψ(V ) ⊆ Rn

exists and are continuous to all orders, that is ,ψ ◦ f ◦ φ−1 is smooth .

1.1.1 Examples of Riemann manifolds

Example 2. [18] Any open region ∆ of the complex plane. Let (∆, z) where
z is the identity map on ∆ to be the associated chart. And let (U, φ) with U
is an open subset of ∆, and φ : U → C is biholomorphic.

Example 3. [18] The sphere S2 can be made into the Riemann sphere by
equipping it with the complex structure

The Riemann sphere S2 ⊂ R3, which can be described in three confor-
mally equivalent ways : S2,C+∞,CP 1 .

• Define the conformal structure on S2 via two charts

(S2 \ (0, 0, 1), φ+), (S2 \ (0, 0,−1), φ−)

where φ± are the stereographic projections

φ+(x1, x2, x3) =
x1 + ix2
1− x3

, φ−(x1, x2, x3) =
x1 − ix2
1 + x3

From north and south pole, respectively If

P = (x1, x2, x3) ∈ S2 with x3 6= ±1

, then if p = (x1, x2, x3) ∈ S2 and x3 6= ±1, then we have

φ(p)+φ(p)− = (
x1 + ix2
1− x3

)(
x1 − ix2
1 + x3

) =
x21 + x22
1− x23
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=
x21 + x22
x21 + x22

= 1

so the transition map between these two charts equals z → 1
z
.

• The one point compactification of C which is denoted by C∞ = C ∪
{∞}. And define the neighborhood base of ∞ in C∞ is given by
the complements of all compact sets of C. Define the corresponding
two charts by (C,Z), (C∞\{0}, 1z ). Clearly the transition map between
these charts is z → 1

z

• The one-dimensional complex projective space

CP 1 = {[z : w]/(z, w) ∈ C2 \ {0, 0}/ ∼

where the equivalence relation is (z1, w1) ∼ (z2, w2) if and only if z2 =
λz1, w2 = λw1 for some λ ∈ C Our charts are (U1, φ1) and (U2, φ2)
where

U1 = {[z, w] ∈ CP 1/w 6= 0}, φ1[z : w]} =
z

w

U2 = {[z : w] ∈ CP 1/z 6= 0}, φ2([z : w]) =
w

z

The transition map here is also z → 1
z
.

Example 4. [18] Any smooth orientable two-dimensional submanifold of R3

is a Riemann manifold .

Definition 1.1.18. [3] The holomorphic functions on a Riemann surface M
are defined as all analytic functions f : M → C∞. They are denoted by
H(M).



Chapter 2

Billiards in polygons

In this chapter we introduce in the first section some basic definitions and
results in polygonal billiards, then in second section we recall the translation
covers in triangular billiard surfaces; the main results of this section will be
found in [19]. Harris shows in [11] that the polygons which tile the plane with
reflection have a periodic billiard orbit. Moreover they have a perpendicular
billiard orbit.

2.1 Basic definitions and results of billiards

in polygons

Definition 2.1.1. [11] A polygonal Billiard table is any closed bounded by
a convex polygon in the Euclidean plane with a point inside the polygon that
has an initial position and direction associated with it.

Definition 2.1.2. [11] The angle of incidence is the acute angle between an
incoming ray and the tangent line, if it exists, of a boundary where the ray
strikes.

Definition 2.1.3. [27] A labeling of an n-gon is a bijection between the set
of edges of the n-gon to the set Z/nZ = {1, 2, ...., n}, where adjacent edges
lie above edges sharing a vertex are sent to adjacent numbers in Z/nZ. A
polygon with a labeling is called a labeled polygon.

Definition 2.1.4. [11] Given an incoming ray and outgoing ray (with a
vertex on the boundary) the angle of reflection is the acute angle created from
the exiting ray and the line tangent to where the ray struck the boundary.

13



14 CHAPTER 2. BILLIARDS IN POLYGONS

Definition 2.1.5. [11] The unfolding when the billiard ball hits the boundary
of a polygon instead of reflecting the motion of the ball we can reflect the
polygon about the edge it hits, and then allow the billiard ball to go straight
through. In this way we keep reflecting the polygon and the billiard path will
be a straight line through this sequence of polygons. This sequence of polygons
form an unfolding.

Definition 2.1.6. [11] Given a polygonal billiard table, a billiard orbit is
the curve obtained from the path of a point inside the billiard table moving
in its given direction where whenever it strikes a boundary it reflects of the
boundary and the angle of incidence is congruent to its corresponding angle
of reflection if the orbit strikes a vertex on the polygon the orbit ends.

Definition 2.1.7. [11] A periodic orbit is an orbit in which the point returns
to its initial position with the same initial direction.

Definition 2.1.8. [11] A perpendicular periodic orbit is a periodic orbit with
some angle of incidence equal to π/2.

Definition 2.1.9. [11] For an n-gon Z ∈ R2 and any billiard path {si} in
it, let wi be the label of the edge containing the ending point of si, for each
i ∈ yZ. Then {wi} is a sequence of labels . This is called the orbit type of
the billiard path .

Definition 2.1.10. [27] Let {si} be a billiard path in Z with corresponding
unfolding {Zi}. Then each Zj has a corresponding billiard path {si,j}. Then
the unfolding representation of si is the union L = ∪i∈Zsi,i, which would be
a straight line contained in the unfolding domain D.

Definition 2.1.11. [27] The space of labeled n-gons is Z̃n = {n-gons in R2

with a labeling }.

Definition 2.1.12. [12] A translation surface is a surface built by identifying
edges of polygons. Two edges may be identified if they are only parallel, have
the same length and opposite orientations.

Prposition 2. [27] Z̃n can be seen as open subset of R2n.
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Proof: Define the map f : Z̃n → R2n such that for each labeled polygon
T, and suppose that vi ∈ R2 be the vertex between edges i and edges i+1,
then f(Z) = (v1, v2, ..., vn) ∈ R2n. Since each polygon is determined by its
vertices and the ordering of its vertices its labeling, this map is injective, so
Z̃n can be seen as a subset of R2n.
Let the collection of n vertices v = (v1, ....., vn) form a labeled polygon and
let r = 1

2
min|vi − vj|. Let Bi be the open ball in R2 with center vi and with

radius r, and consider the open set F = ΠBi. For any p = (p1, ..., pn) ∈ F ,
then for all i, pi ∈ Bi, define the polygonal curve γ by joining p1p2, ..., pnp1
which is a closed piecewise linear curve. Suppose vivi+1 and vjvj+1 are disjoint
line segments, then the vertices of these two line segments will be at least 2r
unit apart, so points on one of the line segments will be at least �.

Definition 2.1.13. [19] A flow is called topologically transitive if it has a
dense orbit.

Definition 2.1.14. [9] A periodic trajectory in a triangle is stable if for any
small perturbation of the triangle, the triangle obtained contains a periodic
trajectory close to the initial one.

Definition 2.1.15. [9] Two trajectories are called close, if they have the
same number of reflection pints and the corresponding reflection points lies
on the same edge of the triangle, close to each other.

Definition 2.1.16. [9] An orbit is uniformly distributed if the amount of
time that it spends in a region is proportional to the area of the area of the
region.

Lemma 2.1.1. [24] Let the angles of a billiard k-gon be πmi

ni
, i = 1, ....., k,

where mi and ni are coprime, and N be the least common multiple of n′is.
Then genus M = 1 + N

2
(k − 2− Σ 1

ni
).

Proof: Let the ith vertex V with the angle πmi

ni
and define the group

obtained by reflections in the sides of Z adjacent to V by Gi, this group of
linear transformation contains 2ni elements of linear transformations of the
plane generated by the reflections in the sides of Z adjacent to V by Gi. Then
Gi composed of 2ni elements.
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The number of the copies of the polygons Zi. According to the construction
of M.

• the number of copies of the polygons Zj that are glued. together at V
equals the cardinality of the orbit of the test angle θ under the group Gi

that is equals 2ni . We had 2N copies of the polygon Z, and therefore
2N copies of the vertex V; after the gluing we have N

ni
copies of this

vertex on the surface M.

• The total number of V in M equals NΣ 1
ni

.

• The total number of edges equals Nk, and the number of faces is 2N.

If we substitute these in the Euler characteristic we get

N
∑ 1

ni
−Nk + 2N = 2− 2g

where g is the genus

2g = 2− 2N +Nk −N
∑ 1

ni

2g = 2 +N(2 + k − 1∑
ni

)

g = 1 +
N

2
(k − 2−

∑ 1

ni
)

�.

Prposition 3. [27] In a polygon Z, if two billiard paths {sj} and {lj} have
the same orbit type, then sj is parallel to lj for all j ∈ Z

Proof: Suppose that {wj} is the orbit type, denote the corresponding un-
folding by {Zj} and the unfolding domain by D. Without loss of generality
we can rotate and translate everything so that the unfolding representation
of {sj} is the straight line so that it coincide with the x - axis and suppose
that L ⊂ D be the unfolding representation of {lj}.

For every j, Zj is the same polygons with the same size, therefore let d > 0
be the diameter of Zj for all j.

Claim 2.1.1. L is horizontal
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Proof: By contradiction, assume that L is not horizontal then it can be
parametrized by x = ay + b for some a, b ∈ R. Then we can find a point
(x0, y0) on L with y0 > d and x0 = ay0 + b. Then while L ∈ D, (x0, y0) ∈ Zj
for some j ∈ Z. However as Zj has diameter d and it intersects with the
positive x-axis, all points in Zj will have y coordinate less than or equal to d,
contradiction to our claim. So L must be parallel to the x-axis �.

Prposition 4. [27] In a polygon Z, a billiard path is periodic if and only if
its orbit type is periodic.

Proof: Let {sj} be any billiard path with the corresponding periodic orbit
type {wj} with minimal period h.

• If h is even define k to be equal to h.

• if h is odd let k = 2h, so in both cases, k is always even .

Let {Zj} be the unfolding corresponding to {wj} and let D be the un-
folding domain, and L be the unfolding representation of {sj} .

For each Zj, let ci be its centroid. If k is even, then Z0 and Zk will have the
same orientation, i.e we can obtain Zk from Z0 by translation and rotation.
Let t : R2 → R2 be the translation and r : R2 → R2be the rotation centered
on ck such that f = r ◦ t will send Z0 to Zk, so by periodicity, fn would send
Z0 to Znk.

Connect the points ...., c−2k, c−k, c0, ck, c2k, c3k, .... by line segments. Let r
be a rotation that is not a multiple of 2π, then ∠c0ckc2k is not a multiple of
2π. Then the points c0, ck, c2k will determine a circle S (if ∠c0ckc2k is an odd
multiple of 2π. c0and c2k will coincide, so S will be the circle with diameter
c0ck). Since f is a rigid motion( i.e a motion which preserves distance), and
fn(c0ck) = cnkc(n+1)k and fn(∠c0ckc2k) = ∠cnkc(n+1)kc(n+2)k. cnk lies on R
for all n ∈ Z. Let 0 be the center of S, and define d = sup{|h − 0|, h ∈
∪j∈ZZj}, which exists as ∪kj=0Zj is compact. Then by periodicity we have
d = sup{|p − 0| : p ∈ ∪j∈ZZj = D}. Let S1 be the closed ball centered at 0
and with radius d, then D ⊂ S1 must be bounded, while the straight line L
is contained in D and cannot be bounded, so we get a contradiction so the
rotation r must be a multiple of 2π, so Z0 and Zk differ only by translation .
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Now s0 ends in the edge w0 and sk ends in the edge wk = w0 with the same
direction. Rotate and scale everything so that the edge w0 of Z is the line
segment from (0, 0) to (1, 0). Suppose s0 ends in (a, 0) and sk ends in (b,0),
and suppose a does not equal to b. Without loss of generality assume b > a.
Then by periodicity of the unfolding, s2k would ends in (b+(b−a), 0), and snk
would ends in (a+n(b− a), 0). For n large enough, we would have a+n(b−
a) > 1, then snk will be out of the polygon Znk. So we get a contradiction, so
a must be equal to b, therefore s0and sk would be line segment in Z ending in
the same spot with the same direction, so the billiard path would repeat itself
ever since, so the billiard path is periodic �.

Corollary 1. [27] If a billiard path is periodic, let {Zj} be the corresponding
unfolding, and let h be the minimal even period. Then Zh can be obtained
from Z0 by a translation and this translation is in the direction of the un-
folding representation L of the billiard path.

Theorem 2.1.2. [25] The billiard in a typical polygon is topologically tran-
sitive.

Theorem 2.1.3. [25] The billiard in a typical polygon is ergodic.

Theorem 2.1.4. [24] In an isosceles triangle ABC with right angle B, there
is no billiard path from A coming back to A.

Proof: If we unfold the isosceles right triangle ABC as illustrated in the
figure below. The vertices labelled A which are the images of the vertex A

Figure 2.1: The unfolding of right isosceles triangle.

of the triangle have both coordinates even, But the vertices labelled B and C
at least one of their coordinates must be odd. Assume not, that there exist a
billiard trajectory from A back to A. Then the corresponding unfolding line
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joining the vertex (0, 0) to a vertex (2l, 2q). This line will pass through (l, q)
which may be the B vertex or C vertex or both l and q are even. And then
the line passes through the point ( l

2
, q
2
) and so on.

2.2 Translation covers among triangular bil-

liard surfaces

In 2015 Schmurr [19] discussed all translation covers among triangular billiard
surfaces that arise from a particular case of billiards in a triangle whose
interior angles are all rational multiples of π. In this section we will consider
some of the corresponding results.

2.2.1 The rational billiards construction

Define R to be a rational polygonal billiard region i.e the interior angles are all
rational multiple of π. Let D2Q be the dihedral group of order 2Q generated
by Euclidean reflections in the sides of R if the particle moves with this region
at constant speed and with initial direction vector v, changing direction when
it reflects off the sides of R, moves according to the optic law (i.e the angle
of incidence is equal to the angle of reflection). Every subsequent direction
vector for the particle is of the form δ.v, for some element δ ∈ D2Q where D2Q

acts on R2 via Euclidean reflections. j = 1, ..., r where mj, nj are coprime
positive integers and r is the number of vertices then the group G(Q) is
isomorphic to the dihedral group DN , where N is the least common multiple
of n1, n2, ...., nr. Consider the set D2Q.R of 2Q copies of R transformed by
the elements of D2Q. For each edge e of R, we consider the corresponding
elements ρe ∈ D2Q which represents reflection across e. For each δ ∈ D2Q ,
we glue ρeδ.R and δ.R together a long their copies of e. The result is a closed
Riemann surface with flat structure induced by the tiling by 2Q copies of R.

This surface is an example of a compact translation surface. A compact
translation surface can be defined as the result of gluing together a finite set
of polygons in the plane a long parallel edges in such a way that the result
is a compact surface. Equivalently, a translation surface can be defined as a
real two manifold.
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Definition 2.2.1. [19] A conical singularity p on a flat structure is
a point such that, in the flat metric induced by the coordinate maps, the total
angle (” cone angle ”) about p is not equal to 2π.

Definition 2.2.2. [19] Let X be a flat surface with conical singularities. Let
X̃ be the flat surface obtained by puncturing all singularities of X. If all
transition functions of X̃ are translations, then X is a translation surface.

Definition 2.2.3. [19] The cone angle of conical singularities on the trans-
lation surface are always integer multiple of 2π.

Theorem 2.2.1. [21] Every rational polygons has a periodic billiard path.

2.2.2 Billiards in rational triangle

Let (a1, a2, a3) be a triple of positive integers. Let T (a1, a2, a3) denotes a
triangle with internal angles a1π

Q
, a2π

Q
and a3π

Q
(where Q = a1 + a2 + a3 and

gcd (a1, a2, a3) = 1) suppose that X(a1, a2, a3) be a translation surface a
rising from billiards in T (a1, a2, a3) via the Fox-Kershner [19]. This surface
is called a triangular billiard surface. If the triangle is isosceles or right, the
corresponding surface is called an isosceles or right triangular billiard surface.

Definition 2.2.4. [19] A billiard triangulation is a triangulation τ of X
whose triangles are the various elements of D2Q.T .

Remark 2. [19] Let T (a1, a2, a3), label the vertices of T as v1, v2 , and v3,
where vi corresponds to ai. Hence the total number of triangles in τ is 2Q,
that the number of vertices of τ corresponding to vi is gcd(ai, Q) and each
member of this set has a cone angle of ( ai

gcd(ai,Q)
)2π.

Definition 2.2.5. [19] Let v1, v2, v3 be the vertices of T (a1, a2, a3) and let
πX : X(a1, a2, a3) → T (a1, a2, a3) be the standard projection. A vertex class
of X(a1, a2, a3) is any of three sets π−1X (v1) , π−1X (v2), or π−1X (v3), for a given
vertex class either all the elements are singular or all are nonsingular; hence
we call a vertex class singular if its elements are singularities and nonsingular
if its elements are nonsingular.

A vertex class π−1X (vi) is nonsingular if and only if ai divides Q. More-
over, the sum of cone angles of the elements of π−1X (vi) is 2aiπ.
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Definition 2.2.6. [19] A translation cover is a holomorphic (possibly ram-
ified ) cover of translation surfaces f : X → Y such that, for each pair of
coordinate maps φX and φY on X and Y, respectively, the map φY ◦f ◦φ−1X is
a translation when φX and φy are restricted to open sets not containing sin-
gular points, we say f is balanced if f does not mapping points to nonsingular
points.

Definition 2.2.7. [19] We say that X and Y are translation equivalent if
there exists a degree 1 translation cover f : X → Y.

Lemma 2.2.2. [19] Suppose f: X(a1, a2, a3)→ X(b1, b2, b3) is a translation
cover of triangular billiard surfaces. Let πX : X(a1, a2, a3) → T (a1, a2, a3)
and πY : X(b1, b2, b3)→ T (b1, b2, b3) be the canonical projections to triangles
with vertices v1, v2, v3 and w1, w2, w3 respectively. Suppose that p ∈ π−1Y (wi)
, p′ ∈ π−1X (vj) and f(p

′
) = p with a ramification index of m at p

′
. Then

mbi
gcd(bi, b1 + b2 + b3)

=
aj

gcd(aj, a1 + a2 + a3)

Proof: The cone angle of Ṕ is m times the cone angle at p. So the result
follows from remark 2.

Lemma 2.2.3. [19] Let a and b be relatively prime positive integers not both
equal to one. The right triangular billiard surface Y = X(a1 + a2, a1, a2) is
related to two isosceles triangular billiard surfaces X1 and X2 via translation
covers fi : Xi → Y for each i, if ai is odd then Xi = X(2aj, ai, ai) and fi has
degree 2, if it is even then Xi = X(aj,

ai
2
, ai

2
) and fi has degree one.

There are only three surfaces X(1, 1, 2), X(1, 2, 3)andX(1, 1, 1) such that
these surfaces are triangular billiard surfaces which have no singularities,
and the only three triangular surfaces of genus 1; furthermore X(1, 2, 3) and
X(1, 1, 1) are actually translation equivalent. Each of these surfaces admits
balanced translation covers of itself by itself of arbitrary high degree, this
fact is related to the fact that T (1, 1, 2), T (1, 2, 3) and T (1, 1, 1) are the
only Euclidean triangles which tile the Euclidean plane by flips. Since about
ramification points flat ramified covers are locally of the form z → z

1
n for

some n > 1, implying that the cone angle of the ramification point is greater
than 2π, hence ramification points are singular.
Each trajectory in a rational polygon can take at most 2M different directions
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after all successive collisions. This stands in contrast to the dynamics in
an irrational billiard where the number of directions explored by a single
trajectory is infinite. Identifying the corresponding opposite sides of R one
gets a surface of genus g, where

g = 1 +
M

2
Σi=k
i=1

ni − 1

mi

.

The genus equals to unity for rectangle, equilateral triangle and tri-
angle with angles equal to π

3
, π

2
, π

6
and π

2
, π

4
, π

4
, polygon R has in these

cases the shape of rectangle, parallelogram or regular hexagon and is (after
identification of the opposite sides ) topologically equivalent to a torus .

A simple example of genus 2 the rhombus with vertex angle equal to π
3

or in general a π
3

parallelogram, the triangle with the angles (2π
3

,π
6
, π

6
), (

3π
5
, π
5
, π
5
) , (π

2
, 3π

8
, π
8
) , the deltoids with angles (2π

3
, π
3
, 2π

3
, π
3
) and (3π

4
, π
4
, 3π

4
, π
4
)

or the trapeze (π
2
, π
2
, π
3
, 2π

3
)

The genus 3 is characteristic for π
4

parallelogram or for a billiard in the
shape of 3-rectangular steps. Also the triangles (3π

8
, 3π

8
, π
4
), (π

7
, π
7
, 5π

4
) , (π

8
, 3π

8
, 5π

8
)

, (π
3
, π
9
, 5π

9
), a rectangle with the right triangle cut a way a long one side or

the trapeze (π
2
, π
2
, 5π

6
, π
6
) leads to dynamics of three holes.

Some examples of genus four billiards like π
5

rhombus, 2π
3

hexagon and π
3
.

The rhombus with vertex angle equal to π
(N+1)

or the N-steps rectangu-
lar staircase correspond to manifolds of genus g =N. knowing examples of
billiards belonging to each of the classes labeled by the finite genus g.

2.3 Polygons that tile the plane with reflec-

tions

In 2007 Harris proved that in [11] the class of polygons that tile the plane with
reflection admits a periodic orbit. Moreover this class admits a perpendicular
periodic orbit. In this section we recall these results.
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Definition 2.3.1. [11] A polygon tiles the plane with reflections if given any
sequence of polygons xn that is generated by reflection across one side of the
proceeding polygon, then for all m,n ∈ N, the intersection of the interiors of
polygon xn and xm is either empty or the full interior of xn.

Figure 2.2: An example of a polygon that tile the plane with reflection.

Figure 2.3: An example of a polygon that does not tile the plane with reflec-
tion.
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Lemma 2.3.1. [11] The sum of interior angles in a polygon is given by∑s
i=1 ai = (s − 2)π = s−2

2
2π where s is the number of sides in the polygon

and ai is an interior angle .

Theorem 2.3.2. [11] A polygon that tiles the plane with reflections must
have angles in the form αi = 2π

ki
where αi is any angle and ki ∈ Z and ki ≥ 3.

Proof: The polygon that tile the plane must be completely covered with
that polygon with no overlaps. The angles around each vertex must be equal
since they are obtained by reflections. The sum of the angles around each
vertex is 2π. So this vertex must be of the form kiαi = 2π, therefore αi = 2π

ki
.

Here ki represents the number of angles around the vertex, ki cannot be of
less than three, since if that happens, then the point will not be a vertex �.

Theorem 2.3.3. [11] A polygon that tiles the plane with reflection has be-
tween three and six sides.

Proof: The sides of the polygon can not be less than three sides. So a
polygon that tile the plane must have at least three sides. By lemma 2.3.1
and theorem 2.3.2 we can conclude that the polygon must have three or more
sides.

s∑
i=1

2π

ki
=

s∑
i=1

ai = (s− 2)π =
(s− 2)

2
2π.

So
s∑
i=1

1

ki
=

(s− 2)

2
(2.1)

since ki ≥ 3 then
∑s

i=1
1
ki
≤ s

3
. If s > 6, then

s

3
=

2s

6
=

3s− s
6

<
3s− 6

6
=
s− 2

2

So if s > 6 then
n∑
i=1

1

ki
≤ s

3
<
s− 2

2

and so the equality
∑s

i=1
1
ki

= s−2
2

in (2.1) will not hold.
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So a polygon that tiles the plane with reflections has between 3 ≤ s ≤ 6
�.

Theorem 2.3.4. [11] The class of a billiard tables that tile the plane with
reflections is [ the regular hexagons; the rectangle; the rhombus with angles
2π/3 and π/6 ; any kite with angles 2π/3, π/2, π/2, andπ/3; any triangle with
angles 2π/3 and two angles of π/6 ; any triangle with one right angle, one
angle of π/3 and one angle of π/6; any triangle with a right angle and two
angles of π/4 ; and any triangle with all angles π/3]

Proof:

Case 1 Six sides. Let b1, b2, ...., b6 be the angles of a hexagon without loss
of generality we write our angles as b1 ≥ b2 ≥ ...... ≥ b6

6∑
i=1

bi = (6− 2)π = 4π

6∑
i=1

bi =
6∑
i=1

2π

ki
= 4π.

So,
6∑
i=1

2π

ki
= 4π.

If we divide both sides by 2π we obtain

6∑
i=1

1

ki
= 2

because of how are angles are organized we have

1

k1
≥ 1

k2
≥ ..... ≥ 1

k6
.

So,

k1 ≤ k2 ≤ ...... ≤ k6.
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Let k1 = 4, then

4 ≤ ki ; for every i

1

ki
≤ 1

4
; for every i

Σ6
i=1

1

ki
≤ Σ6

i=1

1

4
=

6

4
6= 2.

So k1 cannot be any number greater than or equal to 4. So k1 = 3,
then all the k′s must be 3. Since

Σ6
i=1

1

3
=

6

3
= 2.

If we change one of the 1
3

′
s to a less value, then the some will not be 3.

Therefore, ki = 3 for all the angles and all angles are 2π
3

. So the reg-
ular hexagon is the only hexagon that tiles the plane with reflections.
Because if every angle is 2π

3
, then to construct that angle the segments

must be congruent otherwise the polygon will not tile the plane with
reflection. Figure 2.4 explains the case If m and l are not equivalent.
If that happens then after a reflection across m then another reflection
across l

′
shows that m

′
and l will make give the interior of whatever

polygon this set of segments belongs to be different, therefore the poly-
gon will not tile the plane with reflections

Figure 2.4: m and l are not equivalent, so the corresponding polygon will not
tile the plane with reflection.

case 2 Five sides.
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Let b1, ..., b5 be the sides of the pentagon, without loss of generality
assume

b1 ≥ b2 ≥ ..... ≥ b5

The sides of the pentagon add up to

5∑
i=1

bi =
(5− 2)2π

2
=

3× 2π

2

5∑
i=1

1

ki
=

3

2
.

Assume k1 = 4
5∑
i=1

1

ki
≤ 5

4
6= 3

2
.

So k1 = 3. If we take k2 = 4 then at most we find

1

3
+

5∑
i=2

1

ki
≤ 4

4
+

1

3
= 1 +

1

3
=

4

3
6= 3

2

So k2 = 3. If we take k3 = 4 then at most we have

1

3
+

1

3
+

5∑
i=3

1

ki
≤ 1

3
+

1

3
+

3

4
=

17

4
6= 3

2

So take k3 = 3, if we assume k4 = 5

1

3
+

1

3
+

1

3
+

1

5
+

1

ki
≤ 1

3
+

1

3
+

1

3
+

1

5
+

1

5
=

21

15
6= 3

2

So k4 is either 4 or 3 .

• case 2a : k4 = 4.
If k4 = 4 then k5 has only one solution. That is

1

3
+

1

3
+

1

3
+

1

4
+

1

k5
=

3

2

1

k5
=

3

2
− 1

4
− 1 =

6− 5

4
=

1

4
.

So there is only one possibility for a pentagon that tiles the plane
so far. Which is the pentagon with angles 2π

3
, 2π

3
, 2π

3
, π
2
, π
2
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• case 2b : If k4 = 3 then,

1

3
+

1

3
+

1

3
+

1

3
+

1

k5
=

3

2

1

k5
=

3

2
− 4

3
=

9− 8

6
=

1

6

k5 = 6

Figure 2.5: A pentagon with angles (2π
3
, 2π

3
, 2π

3
, π
2
, π
2
)

Figure 2.6: A pentagon (2π
3
, 2π

3
, π
2
, 2π

3
, π
2
)

case 3: Four sided. Let b1, b2, b3, b4 be the sides of the four sided polygon
such that

b1 ≥ b2 ≥ b3 ≥ b4
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Figure 2.7: A pentagon with angles (2π
3
, 2π

3
, 2π

3
, 2π

3
, π
3
)

4∑
i=1

bi = 2π

4∑
i=1

1

ki
= 1

since

k1 ≤ k2 ≤ k3 ≤ k4.

If k1 = 5 then
4∑
i=1

1

ki
≥ 4

5
6= 1

So k1 must be 4 or 3

• case 3a :k1 = 4, then

Σ4
i=1

1

ki
=

1

4
+ Σ4

i=2

1

ki

≤ 1

4
+ Σ4

4i=2

1

4

=
1

4
+

3

4
=

4

4
= 1

then all the k′is equals four also. This quadrilateral is a rectangle.
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• case 3b : k1 = 3
If k2 = 5, then

4∑
i=1

1

ki
=

1

3
+ Σ4

i=2

1

ki
≥ 1

3
+

3

5
=

14

15
6= 1

So k2 does not equal 5, it must be either 3 or 4

– Case3b(i): k2 = 4
If k3 = 5 then

4∑
i=1

1

ki
≥ 1

3
+

1

4
+

1

5
+

1

3

=
2

3
+

1

4
+

1

5

=
40 + 29

60
6= 1

so k3 = 3.
When k1 = 3, k2 = 4 and k3 = 4,

1

3
+

1

4
+

1

4
+

1

k4
= 1

5

6
+

1

k4
= 1

1

k4
=

1

6
.

So that k4 equals 6. So we obtain another quadrilateral that
tiles the plane with reflection, which have angles 2π

3
, π
2
, π
2
, π
3
.

Such that the segments making an angle of 2π
3

are equivalent.

A kite is a quadrilateral where adjacent sides are congruent

– Case 3b(ii): k2 = 3, if k3 = 7, then

Σ4
i=1

1

ki
=

2

3
+ Σ4

i=3

1

ki

>
2

3
+

2

7
=

14

21
+

6

20
=

20

21
6= 1

So when k1 = 3, k2 = 3, k3 is 3,4,5 or 6.



2.3. POLYGONS THAT TILE THE PLANE WITH REFLECTIONS 31

When k3 = 6, k4 = 6, then the corresponding quadrilateral
have angles 2π

3
, 2π

3
, π
3

and π
3
. The rhombus of these angles is

the polygon that tile the plane with reflection.

If k3 = 5, then k4 = 15
2

. Since k4 is not an integer so we
ignore this case.

When k3 = 4 then

2

3
+

1

4
+

1

k4
= 1

11

12
+

1

k4
= 1

1

k4
=

1

12

k4 = 12.

It has been shown that the corresponding polygon can not
tile the plane since it is not closed.

If k3 = 3 then
2

3
+

1

3
+

1

k4
= 1

1

k4
= 0

Since k4 is not a positive integer, so this case is not eligible

• Case 3: Three sides.

Let b1, b2 and b3 be the angles of the triangle and without loss
of generality let

b1 ≥ b2 ≥ b3.

So,
b1 + b2 + b3 = π
3∑
i=1

bi =
3∑
i=1

2π

ki
= π
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Figure 2.8: A quadrilateral with angles of the order (2π
3
, π
2
, π
2
, π
3
)

Figure 2.9: A rhombus with angles in order (2π
3
, π
2
, 2π

3
, π
2
)
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After dividing by 2π we have

3∑
i=1

1

ki
=

1

2
.

Since
k1 ≤ k2 ≤ k3

Assume that k1 = 7, then

3∑
i=1

1

ki
=

1

7
+ Σ3

i=2

1

ki

≤ 1

7
+ Σ3

i=2

1

7

=
1

7
+

2

7

=
3

7
<

1

2

therefore, k1 ≤ 6

Figure 2.10: A triangle with angles of the order (π
2
, π
3
, π
6
)
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Figure 2.11: A triangle with angles of the order (π
2
, π
4
, π
4
)

1. If k1 = 6. Let k2 = 6 then

1

6
+

1

6
+

1

k3
=

1

2

1

k3
=

1

2
− 1

3

1

k3
=

1

6
.

So k3 = 6 which is the equilateral triangle. This is the only
case that satisfies k1 ≤ k2 ≤ k3 and Σ3

i=1
1
ki

= 1
2
.

2. k1 = 5, k2 = 5 and k3 = 10 is the only case satisfying the
above conditions. Which is the triangle which have the an-
gles 2π

5
, 2π

5
and π

5
. When sketching this case the reflections

are overlap. So there is no triangle that tile the plane with
reflection .

3. k1 = 4.

If k2 = 4, then 1
4

+ 1
4

+ 1
k3

= 1
2

1
k3

= 0, there is no value
for k3, k2 must be greater than 4. If k2 = 5, then k3 = 20. If
k2 = 6, then k3 = 12. If k2 = 7, then k3 = 28

3
is a non integer

value. If k2 = 8, then k3 = 8. If we sketch these cases we find
overlaps only when k2 = 5.
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4. k1 = 3. Using the conditions

k1 ≤ k2 ≤ k3 ki ∈ Z

and

Σ3
i=1

1

ki
=

1

2

If k2 is 3,4 or 5 then the summation will be greater than 1
2
.

And if k2 = 6, then 1
3

+ 1
6

+ 1
k3

= 1
2
, k3 has no possible value,

so k2 is greater than six.

(a) When k2 = 7 then k3 = 42. But if we sketch this triangle
with reflection it is overlaps.

(b) When k2 = 8, then k3 = 24 which is also overlaps.

(c) If k2 = 9, then k3 = 18, this triangle overlaps by reflection.

(d) If k2 = 10, then k3 = 15. If we sketch this triangle it is
also overlaps.

(e) If k2 = 11, then there is a non integer value for k3.

(f) If k2 = 12, then k3 = 12. When sketching the other
possible triangles with reflection, they do not overlap since
they can be reflected to obtain a hexagon�.

Figure 2.12: A triangle with angles of the order (2π
3
, 2π

7
, π
21

).

.

Theorem 2.3.5. [11] Any periodic orbit in the class of polygons that tile the
plane with reflections belongs to a strip (neighborhood) of periodic orbits.
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Figure 2.13: A triangle with angles of the order (2π
3
, π
4
, π
12

).

Proof: Define the periodic orbit by unfolding, then there is a finite number
of vertices in the corridor which is obtained by the reflection to point which
is identified with the initial position. Take the distances between every seg-
ment perpendicular to the vertices and the line that represents the orbit.
Label these distances by (x1, x2, ...., xn) and let N denotes the minimum of
these distances, where N ∈ R2, N can not be equal to zero since if that
happened then the orbit would not periodic (since that means the orbit will
pass through one of the vertices of the polygon).

Figure 2.14: An example illustrates the distance between the vertices and
periodic orbit.

Let ε = N
2

, we can translate the periodic orbit an ε-distance in the perpen-
dicular direction without intersecting another vertex anywhere in the expres-
sion, that gives an ε-neighborhood which have a periodic orbit, with the same
initial direction as the original orbit. This neighborhood of initial positions
and the corresponding periodic orbit with the same initial direction as the
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original orbit. These orbits form a strip of periodic orbit. These orbits are
periodic since they all keep their direction in the correct orientation, they are
periodic, and if the initial position is translated an amount in direction, then
if a given point is translated in the same direction with the same amount,
the translated point will be identified as well, which means that there exist
a strip of periodic orbit is a part of .

Theorem 2.3.6. [11] A rhombus with angles 2π
3

and π
3

can be expressed as
a regular hexagon with unfolding

Theorem 2.3.7. [11] In the class of a billiard tables that tile the plane with
reflections is {the regular hexagons; the rectangle; the rhombus with angles
2π/3 and π/6 ;any kite with angles 2π/3, π/2, π/2, andπ/3; any triangle with
angles 2π/3 and two angles of π/6 ; any triangle with one right angle, one
angle of π/3 and one angle of π/6; any triangle with a right angle and two
angles of π/4 ; and any triangle with all angles π/3 } every table admits
perpendicular periodic orbit.

Proof:

• Regular hexagon, or any rectangle, for any two parallel edges of the
polygon we can create an orbit that is perpendicular to these edges in
which the orbit does not hit a vertex .

• In the case of rhombus with angles 2π
3

and π
3

a regular hexagon can be
obtained from the rhombus by reflection. Because a regular hexagon
has a perpendicular periodic orbit. By creating an orbit which is per-
pendicular to every two parallel edges of the resulting regular hexagon
from the rhombus. That does not strike any vertex.

• A (2π
3
, π
6
, π
6
) triangle, begin with the orbit which strikes the largest edge

of the obtuse triangle with an angle of incidence equals π
3
, and since

the two smallest angles of the obtuse triangle equals π
6

when the orbit
strikes the shorter sides they must be right angles since the sum of
degree of a triangle equal π. This orbit is periodic since it will end up
in the same initial position with the same initial direction, since it has
perpendicular angle of incidence and will not strike a vertex. Hence it
has a perpendicular periodic orbit.
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• The kite with angles 2π
3

,π
2
,π
2

and π
3
. A regular hexagon can be obtained

by unfolding. Because the regular hexagon has a perpendicular periodic
orbit so does the kite.

• A triangle (π
2
, π
3
, π
6
) A rhombus (2π

3
, 2π

3
, π
3
, π
3
) can be obtained by re-

flecting this triangle. Since the resulting rhombus has a perpendicular
periodic orbit so does the triangle.

• A triangle(π
2
, π
4
, π
4
), this triangle can be expressed as a square. But

the square is a special case of a rectangle, and the rectangle has a
perpendicular periodic orbit so does the (π

2
, π
4
, π
4
) triangle.

• Any equilateral triangle, using the unfolding it can be expressed as a
hexagon, and since the hexagon has a perpendicular periodic orbit, so
does the equilateral triangle �.

Theorem 2.3.8. [11] The class of a billiard tables that tile the plane with
reflections is {the regular hexagons; the rectangle; the rhombus with angles
2π/3 and π/6; any kite with angles 2π/3, π/2, π/2, andπ/3; any triangle with
angles 2π/3 and two angles of π/6; any triangle with one right angle, one
angle of π/3 and one angle of π/6; any triangle with a right angle and two
angles of π/4; and any triangle with all angles π/3 } every table admits a
periodic orbit

2.4 Billiards in square and rectangle

In 2011, Brooks studies the possible periodic trajectories of a point mass in
a rectangular billiard [8]. And the number of impacts if it exists. It has
been shown that these periodic trajectories depend on the slope of the initial
trajectories. In this section we recall these results.

Theorem 2.4.1. [8] Suppose that we draw a line with an irrational slope.
Then it will never cross two different horizontal or (vertical) edges at the
same point.

Proof: Assume not, if that happens, then the slope between those cor-
responding points would be a ratio of two integers. But we chose the slope
to be irrational, so this cannot happen. Hence, if we hit the ball with any
irrational slope, its trajectory on the table will be nonharmonic .
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following the similar argument, if we hit the ball with any rational
slope, its trajectory on the table will be periodic. So there exist a nonperiodic
trajectory �.

Corollary 2. [11] Given any rectangle whose ratio of dimensions is rational
there exist an initial position for an orbit such that given that the orbit has
a rational slope, then the orbit is periodic.

Proof: because the square is one of the class of polygons that tile the
plane with reflections so it admits a periodic trajectory �.

2.4.1 Two impact periodic trajectory

Define the trajectory of the point mass by the direction perpendicular to the
side containing the initial point the point-mass travels a long the perpen-
dicular line from the initial point to the midpoint on the opposite side, and
return along the same path. It will always return a long the same trajectory
because the trajectory line is perpendicular to the sides of impact.

2.4.2 Four impact periodic trajectory

A four impact trajectory can take the shape of a square or a rectangle inside
the square billiard domain.

Lemma 2.4.2. [4] If a point-mass impact a line segment AB at n from a
point r, not on AB, and the trajectory of the point -mass is a long −→np, then
−→np ∩ AB = {n}.

Proof :Since r is not on AB, m]rnA = %, for some % > 0, by the mirror
law of elastic impacts we get that m]rnA = m]xnB for any x ∈ −→np with
x 6= n which implies that the measure of angle ]xnB = % > 0, therefore x

does not belong to
−→
AB.

Which means that for any x belongs to −→np with x 6= n, x does not belong �.

Square billiards

Consider a unit square billiard ABCD with A at (0, 1), B at (1, 1), C at (1, 0)
and D at (0, 0), with the trajectory of a point mass starting on AD at (0, %)
.
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Claim 2.4.1. [4] If the trajectory of a point mass is periodic ending at
(x0, y0 ∓ %) equivalent to (0, %) then x0 ∈ 2Z.

Proof: In order for the point mass travel from the point (0, %) and coming
back to any point on the line segment AD, including (0, %), it must leave
AD and impact BC. With the trajectory unfolded in the plane, in order for
the trajectory of the point mass to travel from the point(0, %) to (x0, y0 ± %)
equivalent to (0, %), the trajectory must pass through the line containing
BC. The square is originally positioned with BC at x = 1. Since we are
investigating x0, we are only concerned with what happens with the square
when it is reflected horizontally since vertical reflection do not alter x0. When
the square is horizontally reflected, first it is reflected about the line x = 1.
places the side of the square equivalent to AD on the line x = 2. Because
the unfolding process consists only reflections by successive horizontal and
vertical integer lines. If we continue reflecting the square by each successive
integer integer line, the side equivalent to AD will always be placed on an
even integer line. Also, these reflection will always place the side equivalent
to BC on an odd integer line. Therefore, if (x0, y0 ± %) is equivalent (x0, %)
so it is impossible for x0 to be an odd number. Therefore x0 ∈ 2Z �.

Claim 2.4.2. [4] If the trajectory of point-mass is periodic ending at a point
(x0, y0 + %) equivalent to (0, %) then y0 ∈ 2Z

Proof: If the trajectory of a point mass ends at (x0, y0 ± %)and this point
is equivalent to (0, %), then it must be possible to reflect the point mass by
integer lines until the reflection of (0, %) is (x0, y0+%), by successive reflection
through integer lines starting with y =1, then y = 2 and so on, because the
point is always a distance of either % or 1− 1% from the nearest integer line
the distance between two successive reflections of (0, %) is either 2% or 2−2%.

After the first reflection, the distance between the two successive reflections
of (0, %) will be 2−2% after the next reflection the distance between (0, %) and
the new reflected point is 2− 2%+ 2%, while we continue with this reflection,
we continue to alternate adding 2− 2% and 2%. If we reflect an even number
of times our new y- coordinate will be r(2− 2%) + r2% + %, for some r ∈ N,
which means that if (x0, y0 − %) is equivalent to (0, %), then

y0 + % = r(2− 2%) + r2%+ %
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or

y0 − % = r(2− 2%) + (r − 1)2%+ %

with r ∈ N
y0 − 2% = r(2− 2%) + (r − 1)2%+ %− %

y0 − 2% = 2r − 2r%+ 2r%− 2%

y0 = 2r

Hence, y0 ∈ 2Z .

Similarly if (x0, y0 + %)is equivalent to (0, %), then

y0 + % = r(2%) + r(2− 2%) + %

y0 = 2r%+ 2r − 2r%

So y0 ∈ 2Z , so if (x0.y0 ± %) is the terminating point of the trajectory and
is equivalent to (0, %) then y0 ∈ 2Z.

To have (x0, y0 ± %) and the point (0, %) being an equivalent points
while reflecting by these specific and successive integer lines x0, y0 ∈ 2Z.
This coincides with the method for unfolding trajectories by reflecting the
billiard domain �.

Claim 2.4.3. [4] If the trajectory of a point- mass which starts on AD of
(0, %) ends at a point (x0, y0 − %) with x0, y0 ∈ 2Z then the point terminates
in a corner before the trajectory completes a period.

Proof: The initial point of the trajectory is (0, %) and the terminating point
is (x0, y0 − %). Therefore, the trajectory line is the line through these two
points which means the midpoint of this line is x0

2
, y0

2
and since x0, y0 ∈ 2Z,

which means that this point is a corner. Therefore the point mass impacts a
corner before a period can be completed �.

Claim 2.4.4. [4] The trajectory of the point mass can not be periodic if the
number of impacts, N, is odd
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Proof: As mentioned above x0, y0 ∈ 2Z. In order for x0 ∈ 2Z, the number
of horizontal reflections of the billiard boundary must be odd. And in order
for y0 ∈ 2Z, the number of vertical reflections of the billiard boundary must
be even initial point is on the integer line x = 0, but falls between integer
lines vertically since the sum of an even number and odd number is an odd
number, the total number of reflection to map the trajectory is odd. However
the first impact occurs before we reflect the billiard domain, so we must add
the first impact to this odd number of impacts so the total number of impacts
is even. When x0, y0 ∈ 2Z, this will always be the case, which we require for
periodic trajectories, therefore if the number of impacts N in a trajectory is
odd, the trajectory can not be periodic �.

Lemma 2.4.3. [4] Reflections about lines x = ν and y = ω with ν, ω ∈ Z
preserve the parity of the coordinates of all integer points

Proof: Let (c, d) be any point, with c, d ∈ Z reflect the point (c, d) by an
integer line y = ω, ω ∈ Z. Denote this reflection by σy=ω(c, d) by properties
of reflection, we get that

σy=ω(c, d) = (c, d+ 2(ω − d)) = (c, 2ω − d)

because ω ∈ Z, 2ω is an even integer which means that if d is even 2ω − d
will be odd . Similarly, ω can reflect out point (c, d) by a vertical integer
line, x = ν, ν ∈ Z

σx=ν(c, d) = (c+ 2(ν − c), d)

= (2ν − c, d)

will also be even �.

Lemma 2.4.4. [4] No composition of reflections about integer lines will ever
map one side of our billiard boundary to the opposite side of the billiard
boundary, so if the points (x0, y0 + %) and (0, %) are equivalent, x0, y0 ∈ 2N.

2.5 Billiards in an acute triangle

In this section we introduce the proof of Fagnano orbit in an acute triangle
by dropping the altitudes from the vertices and drawing the orthic triangle
the orbit following this triangle is what we call the Fagnano orbit [11].

Theorem 2.5.1. [11] In an acute triangle there exists at least one non-
perpendicular periodic orbit called the fagnano orbit.
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Proof: Suppose that 4ABC is an arbitrary acute triangle, draw the alti-
tudes from A,B, and C to points A1, A2, and A3 respectively. The altitudes
meet at a point called orthocenter O. ∠OA3B and ∠OA2C are right angles,
the angles ∠A3OB and ∠A2OC are congruent vertical angles. Since the sum
of the angles of a triangle is π, so ∠A3BO and A2CO must be the same.

Figure 2.15: A fagnano orbit in an acute triangle

Circumscribe circle around the triangle 4OA1C, we can find OC from the
extended law of sines with respect to the circle about the triangle 4OA1C.
Let L1 be the radius of the circle about 4OA1C, then

ŌC

sin(∠OA1C)
= 2L1.

But, ∠OA2C equals 90◦, so

OC

sin(∠OA1C)
=
OC

1
= 2L1.

Then
OC = 2L1.
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Using the same procedure for a circle around 4OA2C. Since ∠OA2C is
right and let L2 be the radius of the circle circumscribed around 44OA2C,
then

OC

sin(∠OA2C)
=

OC

sin(90◦)
= 2L2.

L1 = L2.

If a circle around the point C, with radius L1 and a circle around the point
O with radius L2 are drawn and meet at a point called H, then H is the center
of both of the circles circumscribed around triangles 4OA1C and 4OA2C.

Because both of the circles circumscribed around 4OA1C and 4OA2C
have the same radius, they must be the same circle.

If two right angles share the hypotenuse, the quadrilateral formed by the
composition of these two triangles, can be inscribed in a circle ( since the sum
of the opposite angles of the quadrilateral is 90◦ + 90◦ = 180◦. If the circle
circumscribes the quadrilateral CA2OA, the angles ∠A2CO and ∠OA1A2

are equal, since both angles share the same arc-length in the circle.

By the same way the triangle 4OA3B and 4OA1B are right triangles
that share the hypotenuse, As consequence ∠A1BO and ∠OA1A3 since they
share the same arc-length. So,

∠OA1A3
∼= ∠A3BO ∼= ∠A2CO ∼= ∠OA1A2.

Because the angles ∠OA1C and ∠OA1B are both equal 90◦, and since
the angles ∠OA1A3,∠OA1A2 are congruent, so ∠A3A1B and A2A1C are
congruent, so we conclude that the angles ∠A1A2C and A3AA2 and ∠A1A3B
and ∠AA3A2 are congruent.

The inscribed triangle 4A1A2A3 is periodic orbit, since it has been proved
that the incident angles are congruent to their corresponding angle of reflec-
tion.
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The angle of incidence can not be right angle; since the triangle4ABC
is acute and therefore the altitudes intersect at a point between the other
two vertices of triangle 4ABC which is not a vertex.

If the angle of incidence is a right angle, then the area of the inscribed
triangle4A1A2A3 would be zero, that means this orbit is non perpendicular.

Let x0 be any point on the boundary of the triangle 4A1A2A3 to be
an initial point of our orbit. If we take the direction of the boundary of the
triangle 4A1A2A3, this orbit will end up in the same initial positions, with
the same initial direction. So it is periodic �.
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2.6 Billiards in right triangle

Periodic billiard orbits always comes in strips, that given any point x =
(z, v) where z belongs to the boundary of Z and v indicates the inward
pointing direction, and x is a point whose billiard orbit is periodic, let I ⊆ ∂Z
be an open interval such that z ∈ I and for any z

′ ∈ I the orbit of x
′
= (z

′
, v)

visits the same sequence of sides as x so the point x
′

is periodic. In this
section we recall some of the results about billiards in right triangle found in
[9],[22],[23] and [14].

Definition 2.6.1. [22] A maximal width strip will be called a beam.

Theorem 2.6.1. [9] Through every point of a right triangle passes a periodic
trajectory.

Construction of a periodic trajectories in right triangles

• Obtain a rhombus via reflecting the triangle in its legs, each diagonal
of the rhombus is composed of two legs of the triangle. Call the ver-
tices corresponding to the acute angles of the constructed rhombus the
extremities[9].

• Reflect the rhombus in its sides by following the unfolding of a periodic
trajectory or by constructing a corridor of rhombuses such that the first
and last rhombuses are parallel to each other. The corresponding points
in these rhombuses are joined by a segment, when this segment entirely
contained in the corridor, it is the unfolding of a periodic trajectory[9].

The trajectories which ends at a vertex of an angle are called singular
trajectories, and it is called a removable singularity if the angle is a right
angle and having the form π

n
[9].

Denote the smaller acute angle of a right triangle by α. So the acute angle
of the rhombus is 2α. Because the rhombus is symmetric its reflection in a
side is equivalent to a rotation around its extremity by an angle 2α or −2α,
depending on the direction of rotation [9].
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To prove theorem 2.6.1. First reflect the initial rhombus in its sides n times
so as to make it turn counterclockwise by 2α.n around the vertex B; then n
more times so that it turns clockwise, by −2α.n, around the vertex C. The
number n change from 1 to d π

2α
e. The corridor of rhombuses has a center of

symmetry it coincides with the center On of the nth rhombus.

Trace the maximality wide bundle of segments parallel to the line O0OnO2n

and entirely contained in the rhombuses constructed, we call this bundle a
strip. All segments of the strip (except its border) are unfoldings of periodic
trajectories. These trajectories are called S-trajectories [9]. The maximum
wide bundle of segments parallel to the line O0OnO2n and entirely contained
in the rhombuses constructed. All the segments of the strips (except its
borders) are unfolding of periodic trajectories in4BO0A1. Since the corridor
resembles the letter S these trajectories are called S trajectories.

Figure 2.16: The strip corresponding to the maximal value n =N-1.

Prposition 5. [9] S trajectories are perpendicular.
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Proof: The trajectories of the n-th strip are parallel to O0On. So they
meet either the longer leg BAk or the hypotenuse BOk of the triangle being
perpendicular to it.

Prposition 6. [9] The n-th strip is indicated to an angle nα with respect to
the line O0A1.

Proof : Case 1 : n is even
For every n, n = 2k, the sides of the angle ∠A1O0On are perpendicular to
the sides of the angles ∠O0BOk = nα.

Case 2: n is odd
For an odd n, n = 2k-1, the ∠A0O0On are perpendicular to the sides of the
angle ∠O0BAk, and also we have ∠A1O0On = ∠O0BOk = nα �.

Theorem 2.6.2. [23] Periodic orbits are dense in the phase space of any
irrational right triangle.

Theorem 2.6.3. [22] Suppose that V is an irrational right triangle. Then
there exists an at most countable set B ⊂ V such that for every ϑ ∈ V\B the
orbit (ϑ,θ) is periodic for a dense subset of directions θ ∈ S1.

This theorem tells us that except for an at most a countable set B of
initial positions 0 ≤ x1 ≤ x2 ≤ 1 if (x1, x2) does not belong to B then the
orbit of (x1, v1), (x2, v2) is periodic for a dense set of velocities (v1, v2).

Suppose that one leg of the right triangle is horizontal with the smaller
angle α with the smaller angle of the right triangle and its the angle between
this leg and the hypotenuse and when we say perpendicular (orbit ,beam,..)
belongs to the perpendicularity to the horizontal leg. when we work with
billiards in a right triangle we reflect the triangle in the sides of right angle
to obtain a rhombus so the study of billiards in this triangle reduces to the
rhombus.

Theorem 2.6.4. [22] For any irrational right triangle whose smaller angle
satisfies π

6
< α < π

4
consider any perpendicular periodic beam of period 2p.

Then

1. the midpoint of the beam hits the right angle vertex of the triangle.



2.6. BILLIARDS IN RIGHT TRIANGLE 49

2. the beam returns to itself after half its period with the opposite orien-
tation ,and

3. p is even and the first p+1 letters of the code of the beam from a palin-
drome.

The proof based on the idea of unfolding that is instead of reflecting the
trajectory reflect the beam itself in this side. Fix an orbit sequence so there
is a sequence around this trajectory have the same which have the same
sequence of reflections is made by all these trajectories in the strip, denote
the number of reflections by the length of the strip. The boundary of a
periodic beam contains at least one trajectory segments which hit a vertex
of a polygon. If this vertex is the right angle, then the sequence of reflection
on both sides of this vertex is essentially the same because the singularity
due to such a vertex is removable.

Lemma 2.6.5. [22] Suppose that A+ and B+ are parallel beams not neces-
sarily (perpendicular or periodic) with the same codes, then A+ = B+.

Proof: By induction, let n be the length of reflection.

For n=1. there is only one beam with code 0. Moreover there is a
unique beam with code 01 and a single beam with code 01−1. And they are
separated by an orbit which passes through a vertex of the rhombus.

Suppose the assumption is true for any beam of length n. And it is
the only beam with its code. Fix a beam of length n and let k be the last
rhombus this beam visits. This rhombus is related to the (k + 1)st by two
parallel sides, and to the (k − 1)st along the other two parallel sides. Two
points are common to these three rhombi. This beam can hit exactly one
of these two points when it passes through k-th rhombus. One when exiting
and the other when entering the k − th rhombus.

If this does not happen, then the beam does not split and it continued to
a unique n + 1 beam. If that happens, then the beam splits into two sub-
beams with (n+ 1) length but with different codes (differing in the (n+ 1)st
place)[22] �.
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Theorem 2.6.6. [22] Periodic orbit are dense in the phase space of irrational
right triangles whose smaller angle satisfies π

6
< α < π

4
.

The orbit is called recurrent if its code{ai} satisfies aj = a0 for some j > 0.
A nonrecurrent orbit is called a positive escape orbit if limsupi→∞ai = ∞,
and if liminfi→∞ai = −∞.

A direction is called simple if there are no generalized diagonals in the
invariant surface which contains the direction.

Theorem 2.6.7. [22]

• Consider an irrational right triangle. In a simple direction then there
is at most one nonsingular positive escape orbit and at most one non-
singular negative escape orbit .

• For any irrational right triangle whose smaller angle satisfies π
6
< α <

π
4

there is at most one nonsingular escape orbit in the perpendicular
direction. If it exists it is both a positive and a negative escape orbit.

Theorem 2.6.8. [19] Given a billiard table that is any arbitrary right trian-
gle, there exists a perpendicular periodic orbit.

Proof : Let 4ABC be an arbitrary right triangle with the right angle
at∠ABC.

• When ∠BAC = ∠ACB there exist perpendicular periodic orbit ac-
cording to theorem (2.3.7).

• without loss of generality assume ∠BAC < ∠ACB to represent all
other cases. Use the unfolding across the line segment AB then we
obtain a new triangle 4ABC ′

then the larger triangle 4ACC ′
is acute

because ∠BAC < ∠ACB then ∠BAC < π
4

so the larger angle of

∠∠CAC
′

= 2∠BAC < π
2

and both angles ∠ACC
′ ∼= AC

′
C < π

2
. Con-

sidering the large triangle 4ACC ′
. Because the large triangle 4ACC ′

is acute so it has a fagnano periodic orbit with initial position at B.
The other points where the fagnano orbit strikes the boundaries AC
and AC

′
are D and E. When we shift our initial position B by ε an-

other orbit. Label this new initial positions by F and the subsequent
points where the orbit strikes the boundaries of the large triangle to be
G,H, I, J and K.
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Figure 2.17: A fagnano orbit obtained by reflection a right triangle.

Figure 2.18: A Fagnano orbit after shifted by ε.
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Since this orbit has the same initial direction B̄D‖F̄G and so ∠BDC ∼=
∠FGC. Since we are looking at orbits ∠ADE ∼= ∠BDC. Because we
are looking at orbits

∠ADE ∼= ∠BDC ∼= FGC ∼= AGH.

Hence D̄E‖ḠH. Repeating the same procedure for each set of angles
shows

∠ADE ∼= ∠BDC ∼= ∠FGC ∼= ∠AGH ∼= ∠AJK ∼= ∠CJI

∠AKJ ∼= ∠AED ∼= ∠AHG ∼= ∠C
′
HI ∼= ∠C

′
EB ∼= ∠C

′
KL

∠C
′
IH ∼= ∠C

′
BE ∼= ∠C

′
LK ∼= ∠CFG ∼= ∠CBD ∼= ∠CIJ

Since the triangle4AC ′
C is isosceles so the angle ∠AC

′
C is the same

as the angle ∠ACC
′
and since ∠CFG ∼= ∠C ′

IH and because the sum
of the angles in every triangle is equal to π we have ∠IHC

′ ∼= ∠FGC.
Combining the two congruences lines, we have
∠ADE ∼= ∠BDC ∼= ∠FGC ∼= ∠AGH ∼= ∠AJK ∼= ∠CJI∠AKJ ∼=
∠AED ∼= ∠AHG ∼= ∠C ′

HI ∼= ∠C ′
EB ∼= ∠C ′

KL.

We conclude that the triangles 4AJK,4ADEand 4AGH are all
isosceles and similar to triangles ¯ACC ′ and D̄E‖K̄J‖ḠH‖ ¯CC ′ .

Since the isosceles triangles4AGH 4ACC ′
, 4AKJ share the angle

C
′
AC and their bases are parallel, then the segments ḠC ∼= ¯HC ′ and

K̄H ∼= J̄G. So 4FGC ∼= 4IHC ′
. Since they have a congruent side

adjacent to two congruence angles.

BC ∼= BC ′ because BC ′ is a reflected copy of BC. BC = FC +
ε, BC ′ = C ′I+ IB, and FC ∼= IB because the triangle FGC is congru-
ent to the triangle C

′
HI and the corresponding sides are also congruent,

then IB = ε.
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The triangles 4FGC and 4IJC are similar so:

FC + 2ε

FC
=
CG+ JG

CG

(FC + 2ε)× CG = (CG+ JG)× FC

FC × CG+ 2εCG = CG× FC + JG× FC.

Delete FC × CG from both sides then we have

2εCG = JG× FC

CG(2ε)

FC
= JG.

The triangle 4C ′
HI ∼= C

′
Kl, the ratio of their sides gives:

KH +HC ′

HC ′ =
C ′I + ε+BL

C ′I

C ′I ×KH +HC ′ × C ′I = HC ′ × C ′I +HC ′ × ε+HC ′ ×BL

Delete HC ′ × C ′I from both sides we get

C ′I ×KH = HC ′ × ε+HC ′ ×BL

C ′I ×KH = HC ′(ε+BL)

KH

HC ′
=
ε+BL

C ′I
.

But, IB = ε, KH = JG , GC ∼= HC ′ and FC ∼= C ′I so we obtain

JG

GC
=
ε+BL

FC

GC(2ε)

FC

GC
=
ε+BL

FC

BL+ ε = 2ε

BL = ε
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So if ε = BL and ε = BF then BL ∼= BF and so L is F which
means that the orbit return to its initial position and it will have the
same initial direction because ∠C

′
LK ∼= ∠CFG. So it is a periodic

orbit. Since AB is perpendicular to CC ′and GH‖KJ‖CC ′ and AB is
perpendicular to CC

′
then it is perpendicular to GH and KJ as well

�.
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2.7 Periodic orbits of Billiards on an equilat-

eral triangle

In this section we give some basic results about billiards on an equilateral
triangle proved in [1] and [2].

2.7.1 Fagnano’s Orbit

Theorem 2.7.1. [1] An equilateral triangles admits a periodic orbit

Proof:

1. Case 1: Start at the midpoint with an angle of incidence equals 60◦,
and the bouncing points at the midpoint of each side, then the resulting
is the orbit of period three.

Figure 2.19: An orbit of period 3 in an equilateral triangle.

2. Case 2: The starting point is no at the midpoint of the edge, then the
orbit of period 6 appears.

Figure 2.20: An orbit of period 6 in an equilateral triangle.

�.
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2.7.2 Orbits and tesselations

Let 4ABC be an equilateral triangle

Prposition 7. [2] Every nonsingular trajectory strikes some side of ∆ABC
with an angle of incidence in the range 30◦ < θ < 60◦.

Proof: Let γ be a nonsingular trajectory, let x1 be a point where γ hits
4ABC with angle of incidence β1.

• If β1 lies in the interval 30◦ < β1 < 60◦; set θ = β1.

• Else, let γ1 be the line segment joining. x1 to the next incident point
x2. Let x1 lies on a side AC and x2 is on side BC.

1. If 0 < β1 < 30◦, then β2 = m∠x1x2B. Since β2 is the exterior
angle of the triangle 4x1x2C so θ2 = 60◦ + θ1. Hence 60◦ < θ2 <
90◦. Suppose that γ2 is the segment of γ joining x2 to the next
incident point x3. Then the angle of incidence at x3 lies in the
range 30◦ < β3 < 60◦ since the triangle 4x2x3C have angles 60◦

at C and ∠x3x2C equals 60 + β1 because of the mirror law. So
β3 = 180◦ − (60◦ + β1 + 60◦) = 60◦ − β1, because β1 lies in the
range 0 < β1 < 30◦ so 30◦ < β3 < 60◦. Set θ = β3.

2. If 60◦ < β1 < 90◦ and

(a) If β1 is an interior angle of 4x1x2C, then β2 = 180◦ − (60 +
θ1) = 120−θ1. Because 60◦ < β1 ≤ 90◦, so the minimum value
of β2 is 120−90 = 30 so the maximum value is 120−60 = 60,
so 30◦ < β2 < 60◦. Set θ = β2.

(b) If β1 is an exterior of 4x1x2C. Then β1 = 60◦ + β2 and
β2 = β1 − 60◦. Since β1 lies in the interval 60◦ < β1 ≤ 90◦, so
β2 ∈ 0 < β2 < 30◦. So β3 is the exterior angle of 4x2x3B and
equals β2 + 60. Let γ3 be the segment of γ that connects x3
to the next strike point x4. So

β4 = 180◦− (60◦+β3) = 120−β3 = 120− (60+β2) = 60−β2.

Hence, β4 lies in the desired interval. Set θ = β4.

�.
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Define the periodic orbit on the triangle 4ABC by γ. This triangle is
oriented so that its base is horizontal. Pick a point p at which γ strikes the
triangle 4ABC with angle of incidence in the range 30◦ ≤ θ ≤ 60◦.

A regular tessellation of the plane by equilateral triangles each one is con-
gruent to 4ABC and positioned so that one of its families of parallel edges
is horizontal will be dented by τ .

Embed 4ABC in τ so that its base BC is collinear with a horizontal edge
of τ . Let γ1, ......, γn denote the direct segments of γ labeled sequentially,
then γ1 begins at p and terminates at p1 on side s1 of 4ABC with angle of
incidence θ1.

Prposition 8. [2] A periodic orbit strikes the sides of 4ABC with at most
three incidence angles exactly one of which lies in the range 30◦ ≤ θ ≤ 60◦.
In fact, exactly one of the following holds:

• All incidence angles measure 60◦.

• There are exactly two distinct incidence angles measuring 30◦ and 90◦.

• There are exactly three distinct incidence angles φ, θ and ψ, 0 < φ <
30◦ < θ < 60◦ < ψ < 90◦.

Proof : Define the periodic orbit by γ, and PQ to be an unfolding. By
construction, PQ cross each horizontal edges of τ with angle of incidence
lies in the range 30◦ ≤ θ ≤ 60◦. As consequence, The unfolding cuts a left
leaning edge of τ by an angle of incidence φ which equals 120 − θ, since
θ + φ + 60◦ = 180◦, and cross a right-leaning edge of the tessellation by a
angle of incidence equals ψ. ψ = 180− (60 + θ + 60) = 60− θ.

• when θ = 60◦, ψ = 0, PQ does not cross a right leaning so it crosses
the left-leaning and horizontal edges of τ . In this case all the incidence
angles are equal measures 60◦. In this situation γ is either the fagnano
orbit, and a primitive orbit of period 6, or some iterates of these.

• When θ = 30◦, then φ = 120◦ − 30◦ = 90◦, and ψ = 60◦ − 30◦ = 30◦.
In which case γ is either of period four or some iterate of it.
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• When 30◦ < θ < 60◦, so the lower limit value of φ is 120◦ − 60◦ = 60◦,
and the upper limit value of φ equals 120◦ − 30◦ = 90◦. Therefore
60◦ < φ < 90◦, the lower limit of ψ equals 60 − 60 = 0 and the upper
limit of ψ = 60− 30 = 30, so ψ lies within the range 0◦ < ψ < 30◦.

Figure 2.21: Incidence angles θ, φ, ψ.

Corollary 3. [2] Any two unfoldings of a periodic orbit are parallel.

Theorem 2.7.2. [2] If an unfolding of a periodic orbit γ terminates on a
horizontal edge of τ, then γ has even period.

Proof: If γ is a periodic orbit with the unfolding PQ. P and Q exist on a
horizontal edges of τ , and the basic triangles of τ . Cut by PQ pair off, and
obtain a polygon of rhombic tiles [2]. When the path PQ passes through
the resulting polygon, the path cuts one of the edges of each rhombic tile,
crosses a diagonal of that tile (collinear with a left leaning edge of τ), and
then exits the rhombic through a distinct edge. Because the exits edge of one
tile is the entrance edge of the next one, and the edge containing P in the
first rhombus of the tile is identified with the edge containing Q. Therefore
the number of distinct edges PQ crosses equals twice the number of rhombic
tiles. Therefore α has even period �.

Theorem 2.7.3. [2] If α is periodic orbit and γ 6= α2k−1 for all k ≥ 1 then
every unfolding of γ terminates on a horizontal edge of τ .
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Figure 2.22: A typical rhombic tiling.

Proof: By contrapositive. Let PQ be an unfolding of a periodic orbit γ.
And suppose β to be the angle of incidence at Q. Which is also the angle of
incidence at P, and β belongs to {30◦, 60◦}, by the proof of proposition 8.

When β = 30◦ then γ is some iterate of period four whose unfoldings
terminate on a horizontal edge of τ . Therefore β = 60◦. But, γ can not be
an iterate of period six, and can not be an even iterate of γ. Because of that
happens, then their unfoldings will terminate on a horizontal edge of τ so γ
can not be an even iterate so γ = α2k−1for some k ≥ 1 �.

Figure 2.23: Unfolding orbits of period 4,6 and 10.

Corollary 4. [2] If α is an orbit with odd period, then α = γ2k−1for some
k ≥ 1, in which case the period is 6k − 3
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Suppose that γ is an even periodic orbit and let PQ be an unfolding, and
suppose that G is the group generated by all reflections in the edges of τ .
Since the action of G on B̄C generates a regular tessellation H of the plane
by Hexagons, γ ends on some horizontal edge of τ . As in the definition of
an unfolding , suppose σ1, ...., σn−1 be the reflections in the lines of τ cut by
PQ in order and σn be the reflection in the line of τ containing Q. So the
composition f = σnσn−1.....σ1 maps P to Q and maps the hexagon whose
base B̄C contains P to the hexagon whose base B′C ′ and contains the point
Q. Then the period of γ (n) is even and f is either translation by vector ~PQ or
rotation of 120◦ or 240◦. But B̄C‖ ¯B′C ′ so f is a translation and the position
of Q on B

′
C

′
is exactly the same as the position p on BC is exactly the same

as the position P on B̄C.

Definition 2.7.1. [2] Periodic orbits α and β are equivalent if there exist
respective unfolding PQ and RS and horizontal translation τ such that RS
= τ(PQ).

• The symbol [α] denote the equivalence class of α .

• The period of class [α] is the period of its elements.

Definition 2.7.2. [2] a class is even if and only if it has even period.

Consider the unfolding PQ of a period orbit α. If [α ] is even, let R be a

point on B̄C, let τ be the translation from P to R . The point R is singular
for [α], if τ(PQ) contains a vertex of τ ; then τ(PQ) is an unfolding of a
period orbit whenever R is nonsingular for [α]. Also α strikes BC at finitely
many points on B̄C and singular for [α]. Therefore [α] has cardinality c (the
cardinality of an interval ) .
An odd period is γ2k−1 for some k ≥ 1. But if k 6= l then γ2k−1 and γ2l−1 have
different period and cannot be equivalent. Therefore [γ2k−1] is a singleton
class for each k .

Prposition 9. [2] The cardinality of a class is determined by its parity, in
fact α has odd period if and only if [α] is a singleton class

Any two unfoldings whose terminal points lies on the same horizontal
edge of H are equivalent. Since H has countably many horizontal edges,
there are countably many even classes of orbits.
Furthermore, since at most finitely many points in B̄C are singular for each
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even class .
There is a point 0 on B̄C other than the midpoint that is nonsingular for
every class. Therefore given an even class [α], there is a point S and an
element x ∈ [α] such that OS is an unfolding of α, then OS is the horizontal

translation of PQ by ~PO. Therefore α uniquely determines the point S
denoted hence forth by Sα, OSα denotes the fundamental unfolding of [α].
The fundamental region at O, denoted by ΓO, is the polar region 30◦ ≤ θ ≤
60◦ and centered at O. The Sα points are called the lattice point of ΓO.

2.7.3 Orbits and rhombic coordinates

Let the vector ~OS denotes the fundamental unfoldingOS. Use the natural
rhombic coordinate system given by τ . Suppose that O is the origin and let
the horizontal line containing O be the x-axis and let the y-axis be the line
passing through O with inclusion 60◦ and BC the unit in length.

Figure 2.24: Rhombic coordinates.

Corollary 5. [2] If Sα = (x, y) then α has period 2(x+ y)

Definition 2.7.3. [1] Let Γ be an orbit with initial point point P on edge
e and terminal point on line segment l, then l lies in the bounce circle with
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radius n and center P, where n ∈ N. If Γ crosses n line segment without the
edge e, The edge e is the bounce circle of radius 0, and the bounce circle of
radius ∞ is defined to be the line segment containing e, minus e itself.

Theorem 2.7.4. [1] The equilateral triangle admits exactly one periodic orbit
of odd period, the period three orthoptic orbit.

Proof: Define the vector representation of a periodic orbit by Λ. Which
have E as its initial point and D to be its terminal point on a bounce circle
of odd radius. Define the angle between Λ and the edge containing E by $,
and ξ to be the angle between Λ and the edge containing D. Because Λ is
periodic, so $ = ξ.

Case 1 When D lies on a right -leaning diagonal, then $ = ξ = 30◦, since
both angles are equal and the third angle equals 120◦. But when $ =
30◦ does not yield any crossings with odd bounce circles on right -
leaning diagonals, deleting this case.

Case 2 When D lies on a left leaning diagonal, then $ = ξ = 60◦ then by
2.7.1, shows that $ = 60◦ gives the orbit of period three or six �.

Theorem 2.7.5. [1] An orbit vector (u, v) is periodic if and only if x and y
are integers such that u ≡ v(mod3).

Proof: We say that a given vector (u, v) is periodic if and only if the point
(u, v) after a finite number of reflection is the image of the origin and lies on
a horizontal edge.

Highlighting all images of the edge contains the origin reveals a tessel-
lation of the plane by hexagons.

The vectors (−1, 2)and (1, 1) form a basis of the periodic orbits. Since
both are images of the origin and lie on a horizontal edges so that it represents
a periodic orbits. Any image of the origin which lies on a horizontal edge
can be written as a(−1, 2) + b(1, 1) for some a,b belong to integers. Because
−1 ≡ 2 (mod 3) and 1 ≡ 1 (mod 3 ), if (x, y) = a(−1, 2) + b(1, 1) that is a
periodic orbit then u ≡ v mod 3 �.
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Figure 2.25: Periodic orbits initiate at P and terminate on a blue edge.

Theorem 2.7.6. [1] The period of a periodic orbit (x, y), is given by
2(x+ y) x ≥ 0, y > 0

2y x < 0, y > −x
−2x x < 0, 0 < y ≤ −x

Prposition 10. [1] For any orbit not necessary periodic on the equilateral
triangle, there are no more than three different bounce angles, with at least
one between 30◦ and 60◦, inclusive .

Proof: There are three sets of parallel lines, each line makes an angle of
60◦ with the other two lines. The orbit τ may be parallel to one of the three
set of lines or intersects all sets of lines. The second case happens when
α < 60◦. β = 60◦ + α since it is an exterior angle, and γ = 60◦ − α because
the complement angle of γ is 120◦+α. Therefore α or γ is the desired angle
which lies in [30◦, 60◦]. In the case α = 60◦, the orbit τ is parallel to one of
the diagonals and α ∈ [30◦, 60◦] �.
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Figure 2.26: The orbit τ cuts the three parallel lines at angles α,β and γ



Chapter 3

Billiards on obtuse triangle

This chapter explains the MC-billiard programm wrote by Hooper and schwartz,
much more details found about this program found in [20], [21], and [13].

Definition 3.0.1. [20] Any periodic billiard path in T gives rise to an infinite
repeating word that records the succession of sides encountered by the billiard
path this periodic word is called the combinatorial type of the path.

Theorem 3.0.1. [20] Let T be an obtuse triangle whose big angle is at most
100 degrees then T has a stable periodic billiard path.

Proof : Define the parameter space of obtuse triangles by Ω. The point
(x, y) belongs to the parameter space Ω where x and y represent the small
angles in radians of the triangle. Let W represents the combinatorial type
which means the infinite periodic word which records the sequence of suc-
cessive sides encountered by the billiard path [20]. To every W assign the
region O(W ) containing the points (x, y) belongs to the parameter space such
that W is a combinatorial type on the triangle whose smaller angle x and
y. O(W ) is called an orbit tile if it is nonempty. The periodic billiard path
corresponding to W is called stable if and only if the orbit tile O(W )is open
[20] (i.e O(W) is a nonempty open set) and O(W) is contained in a line if it
is not an open set.

Define S100 to be a region of the parameter space associated with trian-
gles with the largest angle not exceeding one hundred degree assuming x ≤ y
in S100. Let pk = (π

k
, π
2
− π

k
) ∈ ∂∆ .

pk corresponds to a right triangle .

65
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3.1 Unfoldings

We will restrict the work here to words of even length. The part of an
infinite periodic word is called the finite word [20]. We can also get the
infinite periodic word from the given finite word via repeating it endlessly.

Let a word W = w1, ...., w2k be given. If we reflect the given triangle we
will obtain a sequence of triangles T1, ..., T2k such that the triangle Ti−1 is
related to the side Ti via reflection across the with edge of Ti, i = 2, ..., 2k.
Denote the unfolding corresponding to the pair(W,T) by U(W,T ) such that
U(W,T ) = {Ti}2ki=1. Label the top vertices of U(W,T ) as a1, a2, ..... from left
to right. and by the same way let b1, b2, .... be the bottom vertices of the
unfolding.

If the following hold then we say the word W is stable

1. The first and last edge of U(W,T) are parallel.

2. There is a line segment L joining equivalent interior points on the first
and last edges that remains entirely inside U(W,T ) which is called the
centerline.

and the converse is also true [20].

3.1.1 Stability

Definition 3.1.1. [20] Aperiodic billiard path on a triangle is stable if nearby
triangles have a periodic billiard path of the same combinatorial type. We say
that a combinatorial type W is stable if the first and last sides of U(W,T )
are parallel for any triangle T.

Lemma 3.1.1. [20] If W is the combinatorial type for a stable billiard path,
then W is a stable word. Conversely, if W is a stable word, then any periodic
billiard path described by W is stable.

Proof: Let U(W,T ) denotes the unfolding corresponding to a stable peri-
odic billiard path W on T, then the first and last side of U(W,T ) are parallel
and U(W,T ) has a centerline. If we perturb a triangle T slightly we will
obtain a new triangle T

′
, according to the definition of the stability this
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new triangle still have a periodic billiard path with the same combinatorics.
Therefore the new unfolding U(W,T

′
) still has a center line and the first and

last side of the new unfolding are still parallel. It has been shown that the
first and last side of U(W, ∗) are still parallel for an open set of triangles.

Conversely, let the stable word W denotes a periodic billiard path on T. If
we perturb the corresponding triangle slightly, then the first and last sides
of the new unfolding are still parallel. In particular all the a-vertices still
lie above all the b-vertices. Which means the nearby triangles still have a
periodic billiard path described by W�.

Definition 3.1.2. [20] Given a word W then Nij denotes the number of
couplets having type ij.

Example 5. Let W = 13 31 21 12 23 23 13 21

In this example we have N12 = 1 ,N21 = 2 , N13 = 2, N31 = 1 ,N23 = 2
and N32 = 0 .

Lemma 3.1.2. [20] A word W is stable if and only if

N12 −N21 = N23 −N32 = N31 −N13

Proof: Let U(W,T) be the unfolding corresponding to the word W and let
T1, ...., T2k be the triangles in this unfolding. At the beginning of the unfold-
ing U(W,T) add a triangle T0 such that T0and T1 are related via reflection
across the first edge. The first and last sides are parallel if and only if T0 and
T2k are related via a translation [20].

Define αi to be the angle opposite to the side i in the triangle. Consider
the even triangles of the unfolding, N12 represents the number of times a
triangle Ti is rotated in to the triangle Ti+2 in the counterclockwise direction.
Similarly for N21 but in the clockwise direction. The procedure is the same
for N13,N31 and N32, N32. Therefore we rotate T0 to get T2k by an angle
equals.

2N12α3 − 2N21α3 + 2N23α1 − 2N32α1 + 2N31α2 − 2N13α2

2(N12 −N21)α3 + 2(N23 −N32)α1 + 2(N31 −N13)α2 (3.1)
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The map taking T0 to T2kis a translation if and only if the equation(3.1)
equals an integer multiple of 2π [20] �.

The second way to describe stability

Given the word W then the hexpathH associated to this word can be drawn
from the given word by moving a long the dth family when we encounter the
digit d.

Lemma 3.1.3. [20] A word W is stable if and only if the number of times
each letter l = 1, 2, 3 appears in an odd position in W equals the number of
times l appears in an even position.

Example 6. Let
W = 12312,W 2 = 1231212312

the digit 1 appears in positions 1,4,6,9 it appears twice in even positions and
twice in odd positions, for l = 2 appears twice in even positions 2,10 ,and
twice in odd positions 1 and 9, similarly for l = 3 appears in odd position 3
and in even position 8.

Corollary 6. [20] If W is a word of odd length, then W 2 is stable

Proof: Let W be a word of odd length then W = w1w2.....w2k+1 then
W 2 = w1w2....w2k+1w1w2....w2k+1, let l ∈ {1, , 3} appears n times in odd
positions and m times in even position then in W 2 l appears n+m times in
even positions and n+m times in odd position, so according to lemma 3.1.3
W 2 is stable.

Remark 3. [20] The word window in McBilliard draws the hexpaths for the
combinatorial types that the search engine finds.

Lemma 3.1.4. [20] Let W = w1, ....., w2n. Let ndj denote the number of
solutions to the equation wi = d with i congruent to j modulo 2. Let nd =
nd0 − nd1. Then W is stable if and only if nd(W ) is independent of d.

Proof: Define the angles of the triangle T by α1, α2, α3. Going from T0 to
T2n, the number of times a triangle is rotated about the jth vertex counter-
clockwise is denoted by nj. Each time we do such a rotation it is by 2αj.
Therefore to obtain T2nfrom T0, the angle through which we translate and
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rotate is 2n1α1 + 2n2α2 + 2n3α3 = 2n1(α1 + α2 + α3) = 2n1π since the sum
above is an integer multiple of 2π so the map take T0 to T2n is a translation.
Hence these triangles are parallel�.

We can draw a useful graphical interpretation of the word W in a word
window in MCBilliards. The planner hexagonal tiling H represent the union
od edges each edge is labeled by either 1, 2 or 3 depending on the family
containing it. Let W be a word, a path P(W) in H can be constructed, in
succession according to the digits of W.

Lemma 3.1.5. [20] A word is stable if and only if its hexpath is closed.

3.1.2 Special palindrome

Definition 3.1.3. [20] W is called a special palindrome if W is stable and
has the form W = dCd(C−1) where C is a subword and C−1 is the reverse
of C and d ∈ {1, 2, 3}. In this case U(W,T ) has bilateral symmetry and
the translation carrying the first side to the last sides moves perpendicular to
these sides.

If there is a centerline in the unfolding U(W,T), then it must be perpen-
dicular to the first and last sides. Therefore the associated periodic billiard
path on T starts and ends perpendicular to one of the sides of T [20]. Con-
versely, a stable periodic billiard path in the triangle T satisfying the above
property has a word W that is special palindrome.

3.1.3 Turning angles and turning pairs

Definition 3.1.4. [20] Suppose that U(W, t) is the unfolding and let e1 be
the first edge, oriented so that it points from b1 to a1. U(W,T) is said to be
in the first position if e1 is parallel to (0, 1) i.e, e1 points in the direction of
the positive Y- axis.

Let e be an oriented edge of U(W,T) and if we rotate the positive y-axis
counterclockwise until it coincide with e denote the resulting angle by θ(e)
according to the definition θ(e1) must be equal to zero. In general θ(e) is
defined modulo 2π [20].
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Define θ(e) to be a function of (x, y) ∈ Ω, and can be written as

θ(e;x, y) = M(e)x+N(e)y + επ mod 2π ε ∈ {0, 1}. (3.2)

Consider unoriented edges in which case we have

θ(e;x, y) = M(e)x+N(e)y mod π (3.3)

(M(e), N(e)) is the turning pair for e.

Construction of the angular correspondence: Define a canonical map
that take the triangle Ti from the set of triangles of the unfolding to the
i-th vertex vi of the hexpath. The edge between Ti and Ti+1 of the un-
folding U(T, ∗) corresponds to the middle of the edge emanating vi to vi+1.
The remaining two edges of Ti correspond naturally to the midpoint of the
remaining edges of the hexpath H emitting from the vertex vi .

Definition 3.1.5. [20] Let Θ(X) be the point in the plane corresponding to
X under the angular correspondence so there is a real affine transformation
D of the plane such that (M(e), N(e)) = R(Θ(e)).

3.2 Billiards path and defining function

3.2.1 Defining Functions

Definition 3.2.1. [20] Let v1, v2 be any two points in R2, then we write:

• v1 ↑ v2 if the y-coordinate of v1 is greater than the y-coordinate of v2.

• v1 ↓ v2 if the y-coordinate of v2 is greater than the y-coordinate of v1.

• v1 l v2 if the y-coordinate of v1 equals the y-coordinate of v2.

The idea of this section is to define a function fuv such that fuv > 0 if and
only if u ↑ v, and fuv is a function of (x, y) ∈ Ω [20].
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To prove that a region Q ⊂ O(W ) we just have to prove that fai,bj > 0
that is ai ↑ bj for all points (ai, bj) in the region Q.

Definition 3.2.2. [20] Let Ũ(W,T ) be the bi-infinite periodic continuation of
U(W,T). The image of an infinite periodic polygonal path created in Ũ(W,T )
from edges of type d in U(W,T ) for each d ∈ {1, 2, 3} is called the d-spine.

Denote the complete and irredundant list of edges of the d-spine by
e1, ...., en, and label the edges such that e1 is the leftmost edge in the d-
spine. Let

gd(x, y) = Σn
k=1(−1)k−1exp(iM(ek)x+N(ek)y) (3.4)

Definition 3.2.3. [20] Suppose that v1, v2 be two vertices of the unfolding
U(W,T), then v1, v2 are called d-connected if there is a polygonal path of edges
of type d joining v1 to v2, and d is as large as possible.

Suppose the list e
′
1, ....., e

′
m be the edges of type d joining v1 to v2 ordered

from left to right

h(x, y) = Σm
k=1(−1)k−1exp(i(M(e

′

k)x+N(e
′

k)y)) (3.5)

U(W,T) will be rotated so that the first edge is vertical (i.e U(W,T) is in
first position ):

• The translation direction of U(W,T ) is parallel to ±ig(x, y).

• The vector pointing from p to q is parallel to ±h(x, y).

So the defining function

f(x, y)± Im(ḡh)

vanishes if and only if p l q. Here we have set g = gd.

3.3 Computing the turning pairs

As mentioned before the angular correspondence R(Θ(e))Θ allows us to
find the turning pairs M(e), N(e) by coordinatizing the plane (i.e R(Θ(e)) =
(M(e), N(e))). McBilliards computes the turning pairs automatically, by
using the unfold window.
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3.3.1 Step 1 :Triples

Denote the first digit of W by d. Suppose that d− ∈ {1, 2, 3} be the
congruence class of d − 1 mod 3. And denote the congruence class of d + 1
mod 3 by d+ ∈ {1, 2, 3}, and set d0 = d, and suppose that ε ∈ {−1, 0, 1}.
Define α0(dε) = ε [20].

Suppose that d is the i-th digit of W, and we computed αi−1(1), αi−1(2), αi−1(3)
then

αi(dε) = αi−1(dε) + (−1)i

This way allows us to compute the triple of labels for every triangle in
U(W,T ). Using McBilliards you can compute these triples from the unfolding
window if you click on a triangle of the unfolding. Suppose the plane is
coordinatized by the three variables (x,y,z) satisfying the condition that is
x + y + z = 0, so the triple corresponding to T1 is the coordinates of Θ(Ti),
the ith vertex of the hexpath [20].

3.3.2 Step 2 : Edges

Suppose e is an edge of U(W, t) and e is the dth edge of Ti. Define

β(e, dε) = αi − (−1)iε

If Ti is the reflection of the triangle Ti−1 across e, then e can also be an
edge of a Ti−1 triangle in the unfolding U(W,T) (i.e d is the i-th digit of W).

Denote the leftmost edge of the unfolding U(W,T ) by e = e(a1, b1)[20].

3.3.3 Eliminating the third angle

By lemma 2.13 in [20] it has been shown that

θ(e)− θ(e) = −β(e, 1)x+ β(e, 2)y + β(e, 3)z

3
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In this subsection We will introduce formulas which does not contain the
z angle. Define

M(e) =
β(e, 3)− β(e, 1)

3
;N(e) =

β(e, 3)− β(e, 2)

3
.

Because z = (−x− y)modπ so we have

θ(e)− θ(e) = M(e)x+N(e)y

3.4 The Varification Algorithm

Let Pi be a convex dyadic rational polygon, and let O(Wi) be the orbit tile
of Wi. The aim of this algorithm is to show that Pi ⊂ O(Wi). This method
works only for i = 30, ......, 221 by producing a cover of P by convex dyadic
squares P ⊂ ∪Qi, where Qi ⊂ O(W ) for every i. The dyadic rational square
is a square in Ω with sides parallel to the coordinate axes and whose vertices
have the form x(π

2
) here x is a dyadic rational which belongs to [0, 1] (Where

a dyadic rational is a rational number whose denominator is a power of 2).

3.4.1 Certificates of Positivity

Suppose Q is a dyadic rational square, and denote its center by q and its
radius by r, r denotes half the edge length of a dyadic rational square Q. Let
f be a defining function for a pair of vertices of the unfolding U(W,T ). To
varify that f > 0 on Q by using either the gold or the silver methods. We
will mention each method in details.

The Gold Method

In this section we explain the gold method which is described in [20].

Let ∇f = (fx, fy) be the gradient since f(x, y) = ±Im(ḡh) we have

(ḡh)a = ḡah+ ḡha, a ∈ {x, y}

fa = Im(ḡah+ ḡha), a ∈ {x, y}
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Let
f(x, y) = ΣkJksin(Akx+Bky), Jk ∈ N ;Ak, Bk ∈ Z

to be a second form of the defining function. Using a and b instead of x and
y, the second derivatives of f have bounds

|fab| ≤ Fab

Since
fx =

∑
k

JkAkCos(Akx+Bky)

fxx = −
∑
k

JkA
2
ksin(Akx+Bky)

| fxx |≤
∑
k

| Jk || Ak |2| sin(Akx+Bky) |;

| fxx |≤
∑
k

|Jk|Ak|2.

So,

Fxx =
∑
k

A2
k|Jk|

fxy = −
∑
k

JkAkBksin(Akx+Bky)

|fxy| ≤
∑
k

|Jk||Ak||Bk||sin(Akx+Bky)|

|fxy| ≤
∑
k

| Jk || Ak || Bk | .

So,

Fxy =
∑
k

AkBk|Jk|

fy =
∑
k

JkBkcos(Akx+Bky)

fyy = −
∑
k

JkB
2
ksin(Akx+Bky)

| fyy |≤
∑
k

| Jk | |Bk|2.
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Therefore,

Fyy =
∑
k

B2
k|Jk|.

Let r be of the form
r =

π

2
x

where x is some dyadic rational number. Define the quantities

ax = r(Fxx + Fxy) ; ay = r(Fyx + Fyy)

Finally, define the rectangle

G(q, f) = [fx(q)− ax, fx(q) + ax]× [fy(q)− ay, fy(q) + a+ y]

then
∇f(x, y) ⊂ G(Q, f) ; ∀(x, y) ∈ Q.

When f is gold certified, then G(q, f) is completely contained in one of the
standard quadrants in R2. There exist a vertex v on Q such that ∇f is a
positive linear combination of the edges of Q when f is gold certified. That
is f(x, y) > f(v) foe every (x, y) ∈ Q. So if f is gold certified and f(v) > 0
then f |Q is also greater than zero. This is called the gold method to prove
f |Q > 0.

The Silver Method

In [20] Schwartz describes the following algorithm called silver method, In
this subsection we introduce this method which is defined as follows:

Define a not dyadic rational square Q̂ such that Q is midscribed in Q̂.
While its vertices and dyadic square have the form πx with x a dyadic ratio-
nal, as shown in the figure below

Define the rectangle

S(q, f) = [fx(q)− 2ax, fx(q) + 2ax]× [fy(q)− 2ay, fy(q) + 2ay]

With the same notation as in the gold method. then

∇f(x, y) ⊂ S(Q, f);∀(x, y) ∈ Q̂.
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Figure 3.1: Q is midscribed in Q
′
.

When f is silver certified, then S(q, f) is completely contained in one of
the standard quadrants in R2 after rotating them by an angle 45◦. There
exist a vertex v of Q̂ such that ∇f is a positive linear combination of the
edges of Q̂ when f is silver certified, in other words it is disjoint from the lines
which passes through the origin with a slope ±1. When f is silver certified,
then there exist a vertex v of Q̂ such that ∇f within Q̂ is a positive linear
combination of the edges of Q̂ that means f(x, y) > f(v) for every (x, y) ∈ Q̂
and it is also hold for (x, y) ∈ Q so if f is silver certified and f(v) > 0 then
f |Q > 0 is also greater than zero.

A Technical Point

When we will compute rigorous computation r in the above formula will be
replaced by the larger

r̃ = 2x

Then we will work with the rectangles G̃(Q, f) and S̃(Q, f) with the same
definition as above but r is replaced by r̃. This replacement helps us to reduce
the problem to an integer calculation. However it makes the functions a bit
harder to certify.

3.4.2 An Inefficient First try

In this subsection we introduce a simple first try algorithm written by
schwartz in [11] which is so slow. This algorithm goes as follows.
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Suppose that Q is a dyadic square and W is a word. If for each defining
function fij, we can show fij|Q > 0 by the gold or silver method, then W is
called good with respect to Q. When Q ⊂ O(W ) when W is good. Suppose
that Q0 = [0, π

2
]2. Start with a list of squares, with Q0 as its sole member.

Suppose that Q is the last square on the list of dyadic rational square. There
are many choices:

• When f is good in Q, delete Q from the list and add it to the covering.

• When Q ∩ P = φ, then delete Q from the list.

• If the two cases above does not hold, then Subdivide Q in half to get
four squares and replace Q by them.

P will be covered by dyadic squares, when the list becomes empty, that
contained in O(W). If the list becomes empty, then we have a covering of P
by dyadic squares, which contained in O(W ). The problem of this algorithm
is that it is too slow.

3.4.3 The Tournament

Let W and Q be given such that W is a fixed word and Q is a dyadic
rational square. Let A and B be two lists of indices, such that A is a list of
distinct a-vertices, and B is a list of distinct b-vertices.

Definition 3.4.1. [20] Two indices i and j ∈ A are said to be adjacent
vertices if i < j, and there is no index c ∈ A such that i < j < c.

Definition 3.4.2. [20] If iand jare two adjacent indices in A, then a defining
function corresponded to (ai, aj) is called an A - function.

Definition 3.4.3. [20] A vertex i ∈ A is called an A-loser if one of the
following two conditions holds:

• Suppose i and j are two adjacent indices with j > i, and if f is an
A-function corresponding to (ai, aj). Then by using the silver or the
gold method −fQ is a positive.

• Suppose i and j are two adjacent indices, with j < i and if f is an
A-function associated to(ai, aj), then fQ can be certified positive.
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When i is the first or last index in A, then one of the following condition
will not hold. And If i is the only index in A then the two conditions above
will not hold.

If i ∈ A is an A-loser then there exist an index j ∈ A such that ai ↑ aj
throughout Q, so if aj ↑ bk within Q, then we conclude that ai ↑ bk in Q.
When i is not an A-loser then it is an A-survivor.

With the B list all the definitions in the A-list hold except the sign of the
defining function.

• Suppose i and j are two adjacent indices with j > i, and if f is an
B-function corresponding to (bi, bj). Then by using the silver or the
gold method fQ is a positive [20].

• Suppose i and j are two adjacent indices, with j < i and if f is an
B-function associated to(bi, bj), then −fQ can be certified positive [20].

Let f1, ..., fm be a list of A-functions. Create a new list A
′

of the A-
survivor. When A

′
= A then A is called stable. If not, form a sequence

A ⊃ A
′ ⊃ A

′′ ⊃ ..... until the list stabilizes.

This procedure is called an A-tournament on Q. The indices of the last
list is called the A-winners [20].

3.4.4 The improved algorithm

The improved algorithm written by Schwartz in [20] which goes as follows.

Begin this improved algorithm with the list (Q0, A0, B0). Here Q0 as men-
tioned before. And A0,B0 are are called the complete set of indices, such
that A0 = B0 = {1, 2, ..., k}, where k equals half length of W. Let (Q,A,B)
be the final triple on the list at any step.

When Q ∩ P = φ, delete (Q,A,B)from the list and continue. Else.....

• Perform the A -tournament and B- tournament to obtain (Q,A∗, B∗).
Where A∗ contains the A -winners and B∗ contains the B-winners.
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• Let i and j be any elements in A∗ and B∗ respectively, such that (i, j) ∈
(A∗, B∗). We will try to prove that fij |Q> 0. Add Q to the covering
of P when we succeed for each pair of P. Else ....

• Delete the triple (Q,A,B) from the list and bisecting it in to four triples
(Qj, A

∗, B∗),j = 1, .., 4, and replace (Q,A,B) by this four triples.

The covering of dyadic square of P will be obtained and contained in O(W),
if the list becomes empty.

Lemma 3.4.1. [20] If Q is added to our cover then Q ⊂ O(W )

3.5 McBilliards

In this section we give some features about Mc-Billiards programm which is
written by Schwartz and hooper in [13].

3.5.1 The Plotting Console and Color Selector

When McBilliards is ready to plot, it has two pairs of information: the word
W and a point (x, y) ∈ Tile(W ). McBilliards then keeps track of an angle θ
beginning with θ = 0. McBilliards has 4 different plot options:

• The basic plot: McBilliards finds the intersection of the ray Rθ with
the boundary of Tile(W ). This intersection point is plotted and then
θ is incremented. Here Rθ is the angle that the ray makes with the
positive x-axis. If the number of data points is N then θ is incremented
by 2π

N
and a total of N points are used to plot the tile. The numbered

buttons let the user change the value of N. When the value of N is
higher, then the plots is sharper [13].

• newton plot: McBilliards finds the vertices of the orbit tile using New-
ton’s method, and then plot the edges between the vertices by using
Newton method [13].

• Convex hull: By Newton’s Method McBilliards find the vertices, then
takes the polyogn spanned by these vertices. In practice his polygon
is always convex, and hence coincides with convex hull of the vertices.
The convex hull of the vertices usually contains the tile as a proper
subset [13].
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• inner hull: After computing the polygon spanned by the N vertices,
McBilliards inserts a new vertex near the center of each edge, producing
a 2N -gon which seems always to be a proper subset of the tile [13].

3.5.2 Button 2 controls

The Buttton 2 controls determine the behavior of the middle mouse button
when it is clicked on parts of McBilliards. Three of the buttons have to
do with scaling and scrolling. The remaining buttons have to do with the
modification of the plotted orbit tiles. Each tile can be

1. Simply recognized. In the ”normal” mode of function, clicking a tile
simply focuses McBilliards’ attention on this tile. For instance, the
word corresponding to the tile is drawn and the unfolding relative to
the word and the selected triangle is drawn [13].

2. deleted;

3. recolored;

4. raised relative to other tiles;

5. lowered relative to other tiles;

6. Cycled - that is the unfolding for the word is replaced by the unfolding
for the left rotation of the word;

7. recentered. When the tile is initially drawn, some center point (x,y) is
used. This center point can be changed [13].

There is one additional option which have called slop. This option
tells McBilliards to draw the unfolding U(W,T) even when the selected
triangle T does not correspond to a point of Tile(W). On other words,
the unfolding feature is allowed to ”slope over” the edges of the tile.

3.5.3 The Postscript Window

This window allows the user save pictures of each of the three main windows
in to post script files
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• The parameter window

• The unfolding window

• The plotting window

3.5.4 The Labelling Console

The small window marked lets the user to to add and delete labels to the
parameter or unfolding window. If you click on the window, McBilliards
focuses the attention of the keyboard to the strip. Then the user can enter
a label [13].

3.5.5 The Rational Overlay Console

The rational overlay console allows the user to locate specific rational points
in the parameter window, by moving a crosshairs around in rational jumps.
The cluster of buttons on in the upper right hand corner lets the user to move
a crosshairs around the parameter window. The button in the northwest
corner moves the cross in the northwest direction, and so forth. The cross
moves by rational jumps [13] .

The step button controls the size of the jumps. When the dyadic option is
selected, the jump go by way of dyadic fraction. In this situation, a stepsize
of N causes the jumps to be of size 2−N [13].

When the Farey option is selected, the jumps move from one level -N
Farey fraction to the next one. The first few levels of Farey fraction are :

0

1
;
1

1

0

1
;
1

2
;
1

1

0

1
;
1

3
;
2

3
;
1

1

0

1
;
1

4
;
1

2
;
3

4
;
1

1
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Figure 3.2: The rational overlay console.

In general, level N is obtained from level N-1 by using Farey addition law
on consecutive entries, similar to Pascal’s triangle. Every rational numbers
appears at some level. The level of p

q
is the number of steps in the Euclidean

algorithm applied to (p, q). The Farey option is an efficient way of accessing
all rational numbered [13].

When activated, the track button allows the user control the location
of the crosshairs by directly clicking on the parameter window. McBilliards
then picks the best rational approximation to the selected point, according
to the stepsize .

The two rectangles at lower left display the coordinates of the cross.
The enter point button allows the user select preciselt this points on the
parameter window.

3.5.6 The triangle Entry Console

The triangle entry console allows the user triangule portions of the parameter
window by using triangle of rational coordinates . First, select the rational
coordinates by the rational overlay console. When the rational coordinate
has bee selected. Mcbilliards plots the determined triangle by corresponding
to each rational number to the corresponding vertex when the user click on
one of the vertices of the central triangle in the triangle entry console[13].
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McBilliards decide which triangle to determine with the current mouse
click, when the user click on the triangle button.

3.6 The Basic Search Algorithm

3.6.1 Balanced Words and Orbit Tiles

U(W,T) is the unfolding of a triangle T with a corresponding word W.

Definition 3.6.1. [13] The word W is balanced if the first and last sides of
U(W,T) are parallel for every triangle T.

As mentioned before we break W in to couplets. And we let Nij denote
how many times the couplet ij appears in the given word.

If U(W,T ) has a centerline let Tile(W) to be the set of all triangles T
′

such that U(W,T
′
) has a centerline. Then Tile(W) is an open subset of the

parameter space of triangles.

3.6.2 The Weak Test

The weak test is a computational test applied to the pair (W,T) by Hooper
and Schwartz in [13]. The algorithm of this test goes as follows:

• Let v1 and v2 be the two endpoints of one of the two special paths .

• Check the sign of the signed area of the triangle 4(v1, v2, w) for every
vertex w on the other path.

• Reverse the roles of the two paths and repeat.

When we obtain the wrong sign always, then we conclude that When(W,T )
fails the weak test. Therefore if Tile(Ŵ , T ) = φ for every balanced
word Ŵ that contains W as a subword [13].

3.6.3 The Strong Test

In this subsection we introduce the strong test written by Hooper and Schwartz
in [13].
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The strong test checks that W is balanced. If W is not balanced then W
fails the strong test. Henceforth assume W is balanced .

There is two special paths of U(W,T) joining v1 to v2. Suppose v
′
1, ..., v

′
n

be the remaining vertices of one of these paths. Define

m
′
= maxArea(∆(v1, v2, v

′

j)).

Define the remaining vertices of the other special path of U(W,T) by w1, w2, ...., wm,
And define

m = minArea(4(v1, v2, wj))

If you rotate the graph such that the translation taking the first edge to
the last edge of U(W,T ) is horizontal, then the areas we have computed
are all proportional to the y-coordinates of these vertices. The constant of
proportionality is independent of vertex. Thus U(W,T) has a lane (centerline
) if and only if m

′
< m. Thus (W,T) passes the strong test if and only if W

is the orbit type of a periodic billiard path on T.

The Lexi Test The lexi-test is a test which is applied to words W. A
word W fails the lexi-test if and only if W contains a subword W

′
which comes

before W in the lexicographic ordering. For example, W = 312131 fails the
lexi-test because according to the lexicographic ordering the subword W

′
=

2131 comes before W. The search algorithm throws out words which fail the
lexi-test because they are redundant. Because of throwing out McBilliards
does not find all possible periodic orbits of even length up to certain depth.
Rather, McBilliards find all possible equivalence classes of orbit types, where
two types are equivalent if they are rotations of each other [13].

3.6.4 The Algorithm

Denote the depth of the search by D, and a triangle by T. Start the search
algorithm by a list of words called CONTENDERS and another list of
words called WINNERS. Initially CONTENDERS contains the single
word 12 and the second list is empty. The algorithm proceeds until the first
list is empty, then cuts. Now, winners is the list of even length balanced
words of length less than or equal to D which are orbit types of periodic
billiard paths in T [13].
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1. If CONTENDERS 6= φ let W be the first word on CONTENDERS .

2. If W fails the lexi test or the weak test, delete W from CONTENDERS
and return to step 1.

3. If W passes the strong test append W to WINNERS.

4. Let L = Length (W). If L ≤ D−2 then delete W from CONTENDERS
and prepend to CONTENDERS the four words W1,W2,W3,W4 which
have length L+ 2 and contains W as its initial word. Go to step 1 [13].

For example, if we take the word W = 13, then the four words are 1313,
1312, 1321, and 1323.

The algorithm implements a depth first search by the tree of words
pruning off any branches whose initial node fails the weak test or lexi test
[13].

Remark 4. [13] The right angled search works just as the balanced search,
except that the balance condition is different. Here we weaken it to the con-
dition that the difference Nj3−N3j is independent of j = 1, 2 and N12−N21

is even.

3.7 An application of calculus to triangular

billiard

Two applications of billiards given by Gutkin [10]. In this section we will
recall one of them.
Let T1 denotes the pedal triangle of a given triangle T which is formed by
the feet of the three altitudes of T. Suppose Υ be the space of all triangles.
Then p : T → T1 is a natural self-mapping of Υ, the pedal triangle T1 is the
shortest such orbit and it is the only closed (prime) billiard orbit known .

Two triangles T and T
′

are close in the Euclidean topology if we label the
vertices of T=ABC and T

′
= A

′
B

′
C

′
such that A is close to A

′
, and B is

close to B
′
, C is close to C

′
. Denote the subspace of acute triangles by F .

The relative length of the fagnano orbit f(t) = |T1|
|T | , is a positive continuous

function on F . Let |P | denote the perimeter of a polygon. Then harmonic
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polygons are the critical points of the function |p| on the space of polygons.
inscribed in T. For any convex C1 billiard table, this fact is crucial for the
existence of periodic orbits suppose p and q are positive integers. A periodic
orbit with q sides that goes p times around the table has p

q
rotation number,

and period q. For any rational number, 0 < p
q
< 1, with p and q relatively

prime, there are at least two distinct periodic orbits of period q, with rotation
number p

q
which is called the Birkhoff periodic orbits. The condition that

the table is C1 is necessary for the preceding assertion.

For example, there is no triangular table which has a periodic orbit of
period 2 and with rotation number 1

2
and obtuse triangle have no periodic

orbits of period 3 and with rotation number 1
3
.

Theorem 3.7.1. [10] The maximal relative length of the Fagnano periodic
orbit is 1

2
. It is attained at the equilateral triangles.
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